Previous |  Up |  Next

Article

Keywords:
variational problems; $p$--Dirichlet integral
Summary:
We discuss variational problems for the $p$-Dirichlet integral, $p$ non integer, for maps between manifolds, illustrating the role played by the geometry of the target manifold in their weak formulation.
References:
[1] Bethuel F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1992), 153-206. MR 1120602
[2] Bethuel F., Coron J., Demengel F., Helein F.: A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. C.R.A.S., 1990. Zbl 0735.46017
[3] Brezis H., Coron J., Lieb E.: Harmonic maps with defects. Comm. Math. Phys. 107 (1986), 649-705. MR 0868739 | Zbl 0608.58016
[4] Giaquinta M., Modica G., Souček J.: Calculus of Variations and Cartesian Currents. in preparation.
[5] Giaquinta M., Modica G., Souček J.: Cartesian currents and variational problems for mappings into spheres. Ann. Sc. Norm. Sup. Pisa 16 (1989), 393-485. MR 1050333
[6] Giaquinta M., Modica G., Souček J.: Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 106 (1989), 97-159 Erratum and addendum Arch. Rat. Mech. Anal. 109 (1990, 385-392). MR 0980756
[7] Giaquinta M., Modica G., Souček J.: The Dirichlet energy of mappings with values into the sphere. Manuscripta Math. 65 (1989), 489-507. MR 1019705
[8] Giaquinta M., Modica G., Souček J.: The Dirichlet integral for mappings between manifolds: Cartesian currents and homology. Math. Ann. 294 (1992), 325-386. MR 1183409
[9] Giaquinta M., Modica G., Souček J.: The gap phenomenon for variational integrals in Sobolev spaces. Proc. Roy. Soc. Edinburg 120 (1992), 93-98. MR 1149986
[10] Hardt R., Lin F.: A remark on $H^1$ mappings. Manuscripta Math. 56 (1986), p. 1010. MR 0846982
[11] Malý J.: $L^p$-approximation of Jacobians. Comment. Math. Univ. Carolinae 32 (1991), 659-666. MR 1159812
Partner of
EuDML logo