Previous |  Up |  Next

Article

Keywords:
normal space; semicontinuous functions; insertion; limit functions; completely normal space
Summary:
Normal spaces are characterized in terms of an insertion type theorem, which implies the Katětov-Tong theorem. The proof actually provides a simple necessary and sufficient condition for the insertion of an ordered pair of lower and upper semicontinuous functions between two comparable real-valued functions. As a consequence of the latter, we obtain a characterization of completely normal spaces by real-valued functions.
References:
[1] Aleksandrov P.S., Pasynkov B.A.: Introduction to Dimension Theory (in Russian). Nauka, Moscow, 1973. MR 0365524
[2] Aumann G.: Reelle Funktionen. Springer-Verlag, Berlin, 1954. MR 0061652 | Zbl 0181.05801
[3] Blair R.L.: Extension of Lebesgue sets and real-valued functions. Czechoslovak Math. J. 31 (1981), 63-74. MR 0604112
[4] Blair R.L., Swardson M.A.: Insertion, approximation, and extension of real-valued functions. Proc. Amer. Math. Soc. 93 (1985), 169-175. MR 0766550 | Zbl 0558.54012
[5] Blatter J., Seever G.L.: Interposition and lattice cones of functions. Trans. Amer. Math. Soc. 222 (1976), 65-96. MR 0438094 | Zbl 0352.46011
[6] Engelking R.: General Topology. P.W.N., Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[7] Jameson G.J.O.: Topology and Normed Spaces. Chapman and Hall, London, 1974. MR 0463890 | Zbl 0285.46002
[8] Katětov M.: On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91 Correction 40 (1953), 203-205. MR 0050264
[9] Kotzé W., Kubiak T.: Insertion of a measurable function. J. Austral. Math. Soc., to appear. MR 1297004
[10] Kubiak T.: $L$-fuzzy normal spaces and Tietze extension theorem. J. Math. Anal. Appl. 125 (1987), 141-153. MR 0891354 | Zbl 0643.54008
[11] Kubiak T.: Completely normal spaces and insertion of semicontinuous functions. to appear.
[12] Lane E.P.: Insertion of a continuous function. Topology Proc. 4 (1979), 463-478. MR 0598287 | Zbl 0386.54006
[13] Michael E.: Continuous selections I. Annals of Math. 63 (1956), 361-382. MR 0077107 | Zbl 0071.15902
[14] Preiss D., Vilímovský J.: In-between theorems in uniform spaces. Trans. Amer. Math. Soc. 261 (1980), 483-501. MR 0580899
[15] Priestley H.A.: Separation theorems for semicontinuous functions on normally ordered topological spaces. J. London Math. Soc. (2) 3 (1971), 371-377. MR 0278268
[16] Rodabaugh S.E., Höhle U., Klement E.P. (Eds.): Applications of Category Theory to Fuzzy Subsets. Kluwer Academic Publ., Dordrecht, 1992, p. 348. MR 1154566
[17] Schmid J.: Rational extension of $C(X)$ and semicontinuous functions. Dissert. Math. 270 (1988), 1-27. MR 0932847
[18] Tong H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. MR 0050265 | Zbl 0046.16203
Partner of
EuDML logo