[1] Doolan E.P., Miller J.J.H., Schilders W.H.A.:
Uniform Numerical Methods for Problems with Initial and Boundary Layers. Dublin, 1980.
MR 0610605 |
Zbl 0527.65058
[2] Allen D.N., Southwell R.V.:
Relaxation methods to determine the motion in two dimensions of viscous fluid past a fixed cylinder. Quart. J. Mech. and Appl. Math. VIII (1955), 129-145.
MR 0070367
[3] Buleev N.Y.:
Three Dimensional Model of Turbulent Exchange (in Russian). Moscow, Nauka, 1989.
MR 1007137
[4] Samarsky A.A.:
Theory of Difference Schemes (in Russian). Moscow, Nauka, 1977.
MR 0483271
[6] Kochin N.E.: Vector Calculus and the Introduction to Tensor Calculus (in Russian). Moscow, Nauka, 1965.
[7] Angot A.: Complements des mathématiques. A l'usage des ingenieurs de l'electrotechnique et des telecommunications. Paris, 1957.
[8] Kalis H.: Special difference schemes for solving boundary value problems of mathematical physics (in Russian). J. Electronical Modelling, Vol. 8, No. 3, Kiev, 1986, pp. 78-83.
[9] Kalis H.:
Some special schemes for solving boundary value problems of hydrodynamics and magneto-hydrodynamics in a wide range of changing parameters. Latvia Mathematical Annual, Vol. 31, Riga, 1988, pp. 160-166.
MR 0942126
[10] Gantmacher J.R.: Theory of Matrices (in Russian). Moscow, Nauka, 1967.
[11] Ilhyn A.M.: Difference scheme for differential equations with small parameter at highest derivative (in Russian). Mathematical Notes 6 (1969), 234-248.