Article
Keywords:
Fubini theorem; Product Measure Extension Axiom; Radon measure
Summary:
It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.
References:
[1] Carlson T.:
Extending Lebesgue measure by infinitely many sets. Pac. J. Math. 115 (1984), 33-45.
MR 0762199 |
Zbl 0582.28004
[2] Fleissner W.G.:
The normal Moore space conjecture. in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984.
MR 0776635 |
Zbl 0562.54039
[3] Freiling C.:
Axioms of symmetry: throwing darts at the real number line. J. Symbolic Logic 51 (1986), 190-200.
MR 0830085 |
Zbl 0619.03035
[4] Fremlin D.H.:
Measure algebras. in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989.
MR 0991611 |
Zbl 1165.28002
[5] Fremlin D.H.:
Consequences of Martin's Axiom. Cambridge University Press, 1984.
Zbl 1156.03050
[7] Friedman H.:
A consistent Fubini-Tonelli theorem for nonmeasurable functions. Illinois J. Math. 24 (1980), 390-395.
MR 0573474 |
Zbl 0467.28003
[8] Kamburelis A.:
A new proof of the Gitik-Shelah theorem. Israel J. Math. 72 (1990), 373-380.
MR 1120228 |
Zbl 0738.03019
[9] Shipman J.:
Cardinal conditions for strong Fubini theorems. Trans. Amer. Math. Soc. 321 (1990), 465-481.
MR 1025758 |
Zbl 0715.03022
[10] Zakrzewski P.: Strong Fubini theorems from measure extension axioms. an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66.