Previous |  Up |  Next

Article

Keywords:
Fubini theorem; Product Measure Extension Axiom; Radon measure
Summary:
It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.
References:
[1] Carlson T.: Extending Lebesgue measure by infinitely many sets. Pac. J. Math. 115 (1984), 33-45. MR 0762199 | Zbl 0582.28004
[2] Fleissner W.G.: The normal Moore space conjecture. in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984. MR 0776635 | Zbl 0562.54039
[3] Freiling C.: Axioms of symmetry: throwing darts at the real number line. J. Symbolic Logic 51 (1986), 190-200. MR 0830085 | Zbl 0619.03035
[4] Fremlin D.H.: Measure algebras. in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989. MR 0991611 | Zbl 1165.28002
[5] Fremlin D.H.: Consequences of Martin's Axiom. Cambridge University Press, 1984. Zbl 1156.03050
[6] Fremlin D.H.: Real-valued-measurable cardinals. to appear. MR 1234282 | Zbl 0839.03038
[7] Friedman H.: A consistent Fubini-Tonelli theorem for nonmeasurable functions. Illinois J. Math. 24 (1980), 390-395. MR 0573474 | Zbl 0467.28003
[8] Kamburelis A.: A new proof of the Gitik-Shelah theorem. Israel J. Math. 72 (1990), 373-380. MR 1120228 | Zbl 0738.03019
[9] Shipman J.: Cardinal conditions for strong Fubini theorems. Trans. Amer. Math. Soc. 321 (1990), 465-481. MR 1025758 | Zbl 0715.03022
[10] Zakrzewski P.: Strong Fubini theorems from measure extension axioms. an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66.
Partner of
EuDML logo