Article
Keywords:
radical class; factorization system
Summary:
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
References:
[1] Bousfield A.K.:
Construction of factorization systems in categories. J. Pure Appl. Algebra 9 (1977), 207-220.
MR 0478159
[4] Fay T.H., Walls G.L.:
Categorically compact locally nilpotent groups. Comm. Algebra 18 (1990), 3423-3435.
MR 1063986 |
Zbl 0739.20012
[5] Gardner B.J.:
Some degeneracy and pathology in non-associative radical theory. Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74.
MR 0588424 |
Zbl 0447.17004
[7] Herrlich H., Salicrup G., Strecker G.E.:
Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169.
MR 0911689 |
Zbl 0629.18003
[9] Mrówka S.:
Compactness and product spaces. Colloq. Math. 7 (1959), 19-22.
MR 0117704
[12] Stewart P.N.:
Strict radical classes of associative rings. Proc. Amer. Math. Soc. 39 (1973), 273-278.
MR 0313296 |
Zbl 0244.16005