Previous |  Up |  Next

Article

Keywords:
radical class; factorization system
Summary:
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
References:
[1] Bousfield A.K.: Construction of factorization systems in categories. J. Pure Appl. Algebra 9 (1977), 207-220. MR 0478159
[2] Fay T.H.: Compact modules. Comm. Algebra 16 (1988), 1209-1219. MR 0939039 | Zbl 0653.16020
[3] Fay T.H., Walls G.L.: Compact nilpotent groups. Comm. Algebra 17 (1989), 2255-2268. MR 1016864 | Zbl 0683.20028
[4] Fay T.H., Walls G.L.: Categorically compact locally nilpotent groups. Comm. Algebra 18 (1990), 3423-3435. MR 1063986 | Zbl 0739.20012
[5] Gardner B.J.: Some degeneracy and pathology in non-associative radical theory. Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. MR 0588424 | Zbl 0447.17004
[6] Gardner B.J.: Radical Theory. Longman, Harlow, 1989. MR 1006673 | Zbl 1169.16012
[7] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169. MR 0911689 | Zbl 0629.18003
[8] Manes E.G.: Compact Hausdorff objects. General Topology Appl. 4 (1974), 341-360. MR 0367901 | Zbl 0289.54003
[9] Mrówka S.: Compactness and product spaces. Colloq. Math. 7 (1959), 19-22. MR 0117704
[10] Puczylowski E.R.: On unequivocal rings. Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. MR 0605170 | Zbl 0464.16005
[11] Sands A.A.: On ideals in over-rings. Publ. Math. Debrecen 35 (1988), 273-279. MR 1005290 | Zbl 0688.16035
[12] Stewart P.N.: Strict radical classes of associative rings. Proc. Amer. Math. Soc. 39 (1973), 273-278. MR 0313296 | Zbl 0244.16005
Partner of
EuDML logo