Previous |  Up |  Next

Article

Title: Existence of solutions of perturbed O.D.E.'s in Banach spaces (English)
Author: Emmanuele, Giovanni
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 463-470
.
Category: math
.
Summary: We consider a perturbed Cauchy problem like the following $$ {\hbox{\rm (PCP)}} \cases x' = A(t,x) +B(t,x) \ x(0)=x_0 \endcases $$ and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]). (English)
Keyword: perturbed Cauchy problem
Keyword: semi-inner product
Keyword: measure of noncompactness
MSC: 34A12
MSC: 34G05
MSC: 34G20
MSC: 47H15
MSC: 47N20
idZBL: Zbl 0765.34044
idMR: MR1159794
.
Date available: 2009-01-08T17:46:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118427
.
Reference: [1] Ambrosetti: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Univ. Padova 39 (1967), 349-360. MR 0222426
Reference: [2] Crandall M., Pazy A.: Nonlinear equations in Banach spaces.Israel J. Math. 11 (1972), 87-94. MR 0300166
Reference: [3] Deimling K.: Ordinary Differential Equations in Banach Spaces.Lecture Notes in Math. 596, Springer Verlag 1977. Zbl 0418.34060, MR 0463601
Reference: [4] Deimling K.: Open Problems for Ordinary Differential Equations in B-Spaces.Proceeding Equa-Diff. 1978, 127-137. MR 0690603
Reference: [5] Diestel J., Uhl J.J., jr.: Vector Measures.Amer. Math. Soc. 1977. Zbl 0521.46035, MR 0453964
Reference: [6] Dinculeanu N.: Vector Measures.Pergamon Press 1967. Zbl 0647.60062, MR 0206190
Reference: [7] Dunford N., Schwartz J.T.: Linear Operators.part I, Interscience 1957. Zbl 0635.47003
Reference: [8] Emmanuele G.: On a theorem of R.H. Martin on certain Cauchy problems for ordinary differential equations.Proc. Japan Acad. 61 (1985), 207-210. Zbl 0578.34003, MR 0816713
Reference: [9] Emmanuele G.: Existence of approximate solutions for O.D.E.'s under Carathéodory assumptions in closed, convex sets of Banach spaces.Funkcialaj Ekvacioj, to appear.
Reference: [10] Evans L.C.: Nonlinear evolution equations in an arbitrary Banach space.Israel J. Math. 26 (1977), 1-42. Zbl 0349.34043, MR 0440431
Reference: [11] Hu Shou Chuan: Ordinary differential equations involving perturbations in Banach spaces.J. Nonlinear Analysis, TMA 7 (1983), 933-940. MR 0713206
Reference: [12] Kato T.: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. Zbl 0163.38303, MR 0226230
Reference: [13] Martin R.H.: Remarks on ordinary differential equations involving dissipative and compact operators.J. London Math. Soc. 10 (1975), 61-65. Zbl 0305.34092, MR 0369849
Reference: [14] Martin R.H.: Nonlinear operators and differential equations in Banach spaces.Wiley and Sons 1976. Zbl 0333.47023, MR 0492671
Reference: [15] Pierre M.: Enveloppe d'une famille de semi-groups dans un espace de Banach.C.R. Acad. Sci. Paris 284 (1977), 401-404. MR 0440432
Reference: [16] Ricceri B., Villani A.: Separability and Scorza-Dragoni's property.Le Matematiche 37 (1982), 156-161. MR 0791334
Reference: [17] Schechter E.: Evolution generated by continuous dissipative plus compact operators.Bull. London Math. Soc. 13 (1981), 303-308. Zbl 0443.34061, MR 0620042
Reference: [18] Volkmann P.: Ein Existenzsatz für gewöhnliche differentialgleichungen in Banachräumen.Proc. Amer. Math. Soc. 80 (1980), 297-300. Zbl 0506.34051, MR 0577763
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_8.pdf 205.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo