[1] M. Behzad G. Chartrand:
No graph is perfect. Amer. Math. Monthly 74 (1967), 962-963.
MR 0220627
[2] G. Chartrand R. E. Pippert:
Locally connected graphs. Časopis Pěst. Mat. 99 (1974), 158-163.
MR 0398872
[5] P. Hell:
Graphs with given neighbourhoods. In: Problemes combinatoires et theorie des graphes (Orsay 1975). Editions du CNRS, Paris 1978, 219-223.
MR 0539979
[6] L. Nebeský:
On connected graphs containing exactly two points of the same degree. Časopis Pěst. Mat. 98 (1973), 305-306.
MR 0321813
[7] Z. Ryjáček:
On graphs with isomorphic, non-isomorphic and connected N2-neighbourhoods. Časopis Pěst. Mat. 112 (1987), 66-79.
MR 0880933
[8] J. Sedláček:
Finite graphs with distinct neighbourhoods. In: Graphs, Hypergraphs and Applications. Proc. Eyba 1984. Teubner-Texte zur Mathematik 73. Leipzig 1985, 152-156.
MR 0869457
[9] J. Sedláček:
Local properties of graphs. (in Czech). Časopis Pěst. Mat. 106 (1981), 290-298.
MR 0629727
[10] J. Sedláček:
On a generalization of outerplanar graphs. (in Czech). Časopis Pěst. Mat. 113 (1988), 213-218.
MR 0949046
[11] J. Sedláček:
On perfect and quasiperfect graphs. (in Czech). Časopis Pěst. Mat. 100 (1975), 135-141.
MR 0416994
[12] J. Sedláček:
Über eine spezielle Klasse von asymmetrischen Graphen. In: Graphen in Forschungund Unterricht. Kiel 1985, 167-177.
MR 0841557
[13] M. M. Syslo:
On some generalizations of outerplanar graphs: results and open problems. Institute of Computer Science, Wroclaw, Report N - 169, August 1986.
MR 0900192
[15] D. W. VanderJagt:
Sufficient conditions for locally connected graphs. Časopis Pěst. Mat. 99 (1974), 400-404.
MR 0543786 |
Zbl 0294.05123
[16] A. A. Zykov: Problem 30. In: Theory of graphs and its applications. Proc. Smolenice 1963. Praha 1964, 164-165.