Previous |  Up |  Next

Article

References:
[1] A. Avantaggiati: On compact embedding theorems in weighted Sobolev spaces. Czechoslovak Math. J., 29 (104) (1979), no. 4, 635-648. MR 0548224 | Zbl 0432.46030
[2] P. R. Halmos: Measure Theoгy. Graduate texts in mathematics 18, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
[3] A. Kufner B. Opic: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolinae, 25 (3) (1984), 537-554. MR 0775568
[4] P. Gurka B. Opic: Continuous and compact imbeddings of weighted Sobolev spaces I. Czechoslovak Math. J., 38( II3) (1988), 730-744. MR 0962916
[5] B. Opic: Some remarks to a compact imbedding of a weighted Sobolev space defined on an unbounded domain. А. Haaг. Mem. Conf., Budapest/Hungary 1985, Colloq. Math. Soc. János Bolyai 49 (1987), 667-673. MR 0899567
[6] B. Opic: Compact imbedding of weighted Sobolev space defined on an unbounded domain I. Časopis Pӗst. Mat., No. 1, 113 (1988), 60-73. MR 0930807 | Zbl 0646.46029
[7] B. Opic P. Gurka: Ar-condition for two weight fnnctions and compact imbeddings of weighted Sobolev spaces. Czechoslovak Math. J., 38 (I13) (1988), 611-617. MR 0962905
[8] B. Opic P. Gurka: Continuous and compact imbeddings of weighted Sobolev spaces II. Czechoslovak Math. J., 39 (114) (1989), 78-94. MR 0983485
[9] B. Opic A. Kufner: Remark on compactness of imbeddings in weighted spaces. Math. Nachr. 133 (1987), 63-70. MR 0912420
Partner of
EuDML logo