Previous |  Up |  Next

Article

References:
[1] P. J. Cohen: Set Theory and the Continuum hypothesis. Benjamin, New York, 1966. MR 0232676 | Zbl 0182.01301
[2] N. J. Cutland: Nonstandard measure theory and its applications. Bull. London Math. Soc. 75 (1983), 529-589. MR 0720746 | Zbl 0529.28009
[3] F. Diener: Cours d'analyse non-standard. Oran, 1983.
[4] R. Henstock: Definitions of the Riemann type of the variational integrals. Proc. London Math. Soc. (3) II (1961), 402-418. MR 0132147
[5] R. Henstock: Theory of Integration. Butter worths, London, 1963. MR 0158047 | Zbl 0154.05001
[6] R. Henstock: Linear Analysis. Butterworth, London, 1967. MR 0419707 | Zbl 0172.39001
[7] J. Jarník, J. Kurzweil: A non-absolutely convergent integral which admits C1-transformations. Časopis pěst. mat. 109 (1984), 157-167. MR 0744873
[8] J. Jarník, J. Kurzweil: A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J. 35 (710) (1985), 116-139. MR 0779340
[9] J. Jarník J. Kurzweil, S. Schwabik: On Mawhin's approach to multiple nonabsolutely convergent integrals. Časopis pěst. mat. 108 (1983), 356-380. MR 0727536
[10] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (82) (1957), 418-446. MR 0111875 | Zbl 0090.30002
[11] J. Kurzweil: Nichtabsolut konvergente Integrale. Teubner, Leipzig, 1980. MR 0597703 | Zbl 0441.28001
[12] J. Kurzweil: The integral as a limit of integral sums. in: Jahrbuch Oberblicke Mathematik. Bibliographisches Institut, 1984, 105-136. Zbl 0554.26007
[13] P. A. Loeb: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 277 (1975), 113-122. MR 0390154 | Zbl 0312.28004
[14] R. Lutz, M. Goze: Nonstandard Analysis. Lect. Notes in Math. No 881, Springer, Berlin, 1981. MR 0643624 | Zbl 0506.03021
[15] J. Mawhin: Introduction à l'Analyse. 4e edition, Cabay, Louvain-la-Neuve, 1984.
[16] J. Mawhin: Generalized Riemann integrals and the divergence theorem for differentiable vector fields. in: E. B. Christoffel, Butzer ed., Birkhauser, Bassel, 1981, 704-714. MR 0661109 | Zbl 0562.26003
[17] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czechoslovak Math. J. 37 (706) (1981), 614-632. MR 0631606 | Zbl 0562.26004
[18] R. M. McLeod: The Generalized Riemann Integral. Carus Math. Monographs No 20, Math. Assoc. America, Washington, 1980. MR 0588510 | Zbl 0486.26005
[19] E. J. McShane: Unified Integration. Academic Press, Orlando, 1983. MR 0740710 | Zbl 0551.28001
[20] E. Nelson: Internal set theory: a new approach to nonstandard analysis. Bull. Amer. Math. Soc. 83 (1977), 1165-1198. MR 0469763 | Zbl 0373.02040
[21] O. Perron: Über den Integralbegriff. Sitzber. Heidelberg Akad. Wiss. A16 (1914) 1-16.
[22] W. F. Pfeffer: The Riemann-Stieltjes approach to integration. Twisk 187, N.R.I.M.S., C.S.I.R., Pretoria, 1980.
[23] W. F. Pfeffer: Une integrale riemanienne et le theorems de divergence. C. R. Acad. Sci. Paris 299, Ser. I, (1984), 299-301. MR 0761251
[24] W. F. Pfeffer: The divergence theorem. Univ. Petroleum and Minerals Dhraran, Saudi Arabia, Techn. Rept. No 64, 1984. Zbl 0574.26009
[25] A. Robinson: Nonstandard analysis. Proc. Roy. Аcad. Sci. Аmsterdam А 64 (1961), 432-440. MR 0142464
[26] A. Robinson: Introduction to Model Theory and to the Metamathematics of Аlgebra. North-Holland, Аmsterdam, 1965. MR 0153570
[27] A. Robinson: Nonstandard Аnalysis. North-Holland, Аmsterdam, 1967
[28] B. S. Thomson: Derivation bases on the real line. Real Аnal. Exchange 8 (1982-83), 67-207, 278-442.
Partner of
EuDML logo