Previous |  Up |  Next

Article

References:
[1] J. Ceder: On Baire 1 selections. Ric. Mat. 30, 1981, pp. З05 - 315. MR 0682534 | Zbl 0495.28009
[2] J. P. R. Christensen: Topology and Borel stгucture. North Holland Mathematics Studies (10), Amsterdam 1974.
[З] M. M. Čoban: Many-valued mappings and Borel sets, I. Trans. Mosc. Math. Soc. 22, 1970. Transl. Am. Math. Soc. pp. 258-280).
[4] M. M. Čoban: Many-valued mappings and Borel sets, II. Tгans. Mosc. Math. Soc. 23, 1970. (Transl. Am. Math. Soc. pp. 286- 310).
[5] K. Debs: Sélections ďune multi-application à valeuгs $G_\delta$. Bull. Cl. Sci. Math. Acad. R. Belg., 1979, pp. 211-216.
[6] R. Engelking: Selectoгs of the first Baire class for semicontinuous set-valued functions. Bull. Acad. Pol. Sei. XVI, 1968 pp. 277-282. MR 0234431
[7] J. Jayne C. A. Rogers: Upper semicontinuous set-valued functions. Acta Math. 149, 1982, pp. 87 - 125. MR 0674168
[8] K. Kuratowski: Topology, vol. I. Academic Press, New-York, 1966. MR 0217751 | Zbl 0158.40901
[9] K. Kuratowski C. Ryll-Nardzewski: A general theorem on selectors. Bull. Acad. Pol. Sci. XIII, 1965, pp. 397-403. MR 0188994
[10] E. Michael: Continuous selections, I. Ann. Math., 63, 1956, pp. 361 -382. MR 0077107 | Zbl 0071.15902
[11] D. H. Wagner: Suгvey of measurable selection theorems. SIAM Ј. Control Optimization, 15, 1977, pp. 859-903. MR 0486391
[12] D. H. Wagner: Survey of measurable selection theorems: an update. Pгoc. Oberwolfach 1979 conference in measure theory, Lecture Notes in Mathematics, No 794, Springer Verlag. MR 0577971
[13] Z. Grande: Sur une fonction de classe 2 de Baire dont le graphe coupe les graphes de toutes fonctions de classe 1. Real Analysis Exchange 8, 1982-1983, pp. 509-510. MR 0700202
[14] W. Ślezak: Some counterexamples in multifunction theory. Real Analysis Exchange 8, 1982-198З, pp. 494-501. MR 0700200
[15] W. Ślezak: Sharpness of some graph conditioned theorems on Borel 1 selectors. (to appers).
Partner of
EuDML logo