[2] J. P. R. Christensen: Topology and Borel stгucture. North Holland Mathematics Studies (10), Amsterdam 1974.
[З] M. M. Čoban: Many-valued mappings and Borel sets, I. Trans. Mosc. Math. Soc. 22, 1970. Transl. Am. Math. Soc. pp. 258-280).
[4] M. M. Čoban: Many-valued mappings and Borel sets, II. Tгans. Mosc. Math. Soc. 23, 1970. (Transl. Am. Math. Soc. pp. 286- 310).
[5] K. Debs: Sélections ďune multi-application à valeuгs $G_\delta$. Bull. Cl. Sci. Math. Acad. R. Belg., 1979, pp. 211-216.
[6] R. Engelking:
Selectoгs of the first Baire class for semicontinuous set-valued functions. Bull. Acad. Pol. Sei. XVI, 1968 pp. 277-282.
MR 0234431
[7] J. Jayne C. A. Rogers:
Upper semicontinuous set-valued functions. Acta Math. 149, 1982, pp. 87 - 125.
MR 0674168
[9] K. Kuratowski C. Ryll-Nardzewski:
A general theorem on selectors. Bull. Acad. Pol. Sci. XIII, 1965, pp. 397-403.
MR 0188994
[11] D. H. Wagner:
Suгvey of measurable selection theorems. SIAM Ј. Control Optimization, 15, 1977, pp. 859-903.
MR 0486391
[12] D. H. Wagner:
Survey of measurable selection theorems: an update. Pгoc. Oberwolfach 1979 conference in measure theory, Lecture Notes in Mathematics, No 794, Springer Verlag.
MR 0577971
[13] Z. Grande:
Sur une fonction de classe 2 de Baire dont le graphe coupe les graphes de toutes fonctions de classe 1. Real Analysis Exchange 8, 1982-1983, pp. 509-510.
MR 0700202
[14] W. Ślezak:
Some counterexamples in multifunction theory. Real Analysis Exchange 8, 1982-198З, pp. 494-501.
MR 0700200
[15] W. Ślezak: Sharpness of some graph conditioned theorems on Borel 1 selectors. (to appers).