Previous |  Up |  Next

Article

References:
[1] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states. Demonstratio Math. 14 (1981), 725-733. MR 0663122 | Zbl 0483.06007
[2] R. Greechie: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119 to 132. MR 0274355 | Zbl 0219.06007
[3] S. Gudder: Uniqueness and existence properties of bounded observables. Pacific Journal Math. 19 (1966), 81-93, 578-589. MR 0201146 | Zbl 0149.23603
[4] S. Gudder: Axiomatic quantum mechanics and generalized probability theory. Probabilistic Methods in Applied Mathematics, Vol. 2, (A. Bharucha - Reid, ed.), Academic Press, New York, 1970. MR 0266552 | Zbl 0326.60121
[5] S. Gudder: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979. MR 0543489 | Zbl 0439.46047
[6] S. Gudder K. Ruttimann R. Greechie: Measurements, Hilbert space and quantum logics. J. Math. Phys. 23(1982), 2381-86. MR 0685708
[7] P. Pták V. Rogalewicz: Regularly full logics and the uniqueness problem for observables. Ann. Inst. H. Poncaré 38 (1983), 69-74. MR 0700701
[8] P. Pták V. Rogalewicz: Measures on orthomodular partially ordered sets. Journal Pure Applied Algebra 28 (1983), 75-80. MR 0692854
[9] F. W. Schultz: A characterization of state space of orthomodular lattices. J. Comb. Theory A 17 (1974), 317-325. MR 0364042
[10] V. S. Varadarajan: Geometry of Quantum Theory I. Van Nostrand Reinhold, Princeton, New Jersey, 1968. MR 0471674
Partner of
EuDML logo