Previous |  Up |  Next

Article

References:
[1] W. Burmeister: Inversionsfreie Verfahren zur Lösung nichtlinearer Operatorgleichungen. ZAMM 52 (1972), 101-110. MR 0300165 | Zbl 0291.65015
[2] O. H. Hold: On a Newton-Moser type method. Numer. Math. 23 (1975), 411-426. MR 0400686
[3] H.-J. Kornstaedt: Funktionalungleichungen und Iterationsverfahren. Aequationes Math. 13 (1975), 21-45. MR 0388763
[4] J. Křížková P. Vrbová: A remark on a factorization theorem. Comm. Math. Univ. Carol. 15 (1974), 611-614. MR 0361789
[5] J. Moser: Stable and random motions in dynamical systems with special emphasis on celestial mechanics. Princeton University Press 1973. MR 0442980 | Zbl 0271.70009
[6] H. Petzeltová: Remark on a Newton-Moser type method. CMUC (1980) 719-725. MR 0597761
[7] H. Petzeltová P. Vrbová: An overrelaxed modification of Newton's method. Revue Roumaine des Mathématiques 22 (1977), 959-963. MR 0478203
[8] H. Petzeltová P. Vrbová: A remark on small divisors problems. Czech. Math. J. 103 (1978), 1-12. MR 0482803
[9] F. A. Potra: On a modified secant method. Math. Rev. Anal. Numer. Theor. Approximation, Anal. Numer. Theor. Approximation, 8, 2 (1979), 203-214. MR 0573981 | Zbl 0445.65055
[10] F. A. Potra: An application of the Induction method of V. Pták to the study of Regula Falsi, Aplikace Matematiky 26 (1981), 111-120. MR 0612668 | Zbl 0486.65038
[11] F. A. Potra: The rate of convergence of a modified Newton's process. Aplikace matematiky 26 (1981), 13-17. MR 0602398 | Zbl 0486.65039
[12] F. A. Potra: An error analysis for the secant method. Numer. Math., 38 (1982), 427-445. MR 0654108 | Zbl 0465.65033
[13] F. A. Potra V. Pták: Nondiscrete induction and a double step secant method. Math. Scand. 46 (1980), 236-250. MR 0591604
[14] F. A. Potra V. Pták: On a class of modified Newton processes. Numer. Funct. Anal, and Optimiz. 2 (1980), 107-120. MR 0580387
[15] F. A. Potra V. Pták: Sharp error bounds for Newton's process. Numer. Math. 34 (1980), 63-72. MR 0560794
[16] F. A. Potra V. Pták: A generalization of Regula Falsi. Numer. Math. 36 (1981), 333-346. MR 0613073
[17] V. Pták: Some metric aspects of the open mapping theorem. Math. Annalen 165 (1966), 95-104. MR 0192316
[18] V. Pták: A quantitative refinement of the closed graph theorem. Czech. Math. J. 99 (1974), 503-506. MR 0348431
[19] V. Pták: A theorem of the closed graph type. Manuscripta Math. 13 (1974), 109-130. MR 0348430
[20] V. Pták: Deux theoremes de factorization. Comptes Rendus, Acad. Sci. Paris 278 (1974), 1091- 1094. MR 0341096
[21] V. Pták: Concerning the rate of convergence of Newton's process. Comm. Math. Univ. Carolinae 16 (1975), 699-705. MR 0398092 | Zbl 0314.65023
[22] V. Pták: A modification of Newton's method. Čas. pěst. mat. 101 (1976), 188-194. MR 0443326 | Zbl 0328.46013
[23] V. Pták: Nondiscrete mathematical induction and iterative existence proofs. Linear Algebra and its Applications 13 (1976), 223-236. MR 0394119
[24] V. Pták: The rate of convergence of Newton's process. Numer. Math. 25 (1976), 279-285. MR 0478587 | Zbl 0304.65037
[25] V. Pták: Nondiscrete mathematical induction. in: General Topology and its Relations to Modern Analysis and Algebra IV., 166-178, Lecture Notes in Mathematics 609, Springer Verlag, 1977. MR 0487618
[26] V. Pták: What should be a rate of convergence. RAIRO, Analyse Numerique II (1977), 279-286. MR 0474799
[27] V. Pták: Stability of exactness. Comm. Math. (Poznan) 21 (1978), 343- 348. MR 0552012
[28] V. Pták: A rate of convergence. Numer. Funct. Anal, and Optimiz. 1 (1979), 255-271. MR 0537831
[29] V. Pták: Factorization in Banach algebras. Studia Math. 65 (1979), 279-285. MR 0567080
[30] S. Ulm: Iteration methods with succesive approximation of the inverse operator. (Russian) Esti NSV Tead. Acad. Toimetised Fuus-Mat. 16 (1967), 403-411. MR 0224279
[31] J. Zemánek: A remark on transitivity of operator algebras. Čas. pěst. mat. 100 (1975), 176-178. MR 0380436
Partner of
EuDML logo