Previous |  Up |  Next

Article

References:
[1] M. A. Ackoglu R. W. Sharpe: Ergodic theory and boundaries. Trans. Amer. Math. Soc. 1320968, 447-460. MR 0224770
[2] J. Aczél H. Haruki M. A. McKiernan G. N. Sakovič: General and regular solutions of functional equations characterizing harmonic polynomials. Aequationes Math. I (1968), 37-53. MR 0279471
[3] S. Alinhac: Une caractérisation des fonctions harmoniques dans un ouvert borné par des properiétés de moyenne sur certaines boules. C R. Acad. Sci. Paris, Sér. A-B 275 (1972), 29-31. MR 0306527
[4] J. R. Baxter: Restricted mean values and harmonie functions. Trans. Amer. Math. Soc. 167 (1972), 451-463. MR 0293112
[5] E. F. Beckenbach M. Reade: Mean values and harmonie polynomials. Trans. Amer. Math. Soc. 53 (1943), 230-238. MR 0007831
[6] W. Blaschke: Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials. Ber. Ver. Sachs. Akad. Wiss. Leipzig 68 (1916), 3-7.
[7] A. K. Bose: Functions satisfying a weighted average property. Trans. Amer. Math. Soc. 118 (1965), 472-487. MR 0177128 | Zbl 0136.09404
[8] J. Bramble L. E. Payne: Mean value theorems for polyharmonic functions. Amer. Math. Monthly 73 (1966), 124-127. MR 0192074
[9] M. Brelot: Éléments de la théorie classique du potential. CDU, Paris, 1969.
[10] W. Bródel: Funktionen mit Gaussischen Mittelwerteigenschaften fur konvexe Kurven und Bereiche. Deutsche Math. 4 (1939), 3-15.
[11] A. Brunel: Propriété restreinte de valeur moyenne caractérisant les fonctions harmoniques bornées sur un ouvert $R^n$. (selon D. Heath et L. Orey), Exposé No. XIV, Séminaire Goulaouic-Schwartz, Paris, 1971-72.
[12] Z. Cisielski Z. Semadeni: Przegl\c ad niektórych nowszych metod w teorii potenejalu III. Prace matematyezne II (1967), 99-128.
[13] R. Courant D. Hilbert: Mathematical methods of Physics. vol. II, Interscience Pub., New York, 1966.
[14] I. Černý: Základy analysy v komplexním oboru. Academia, Praha, 1967. MR 0222257
[15] J. Delsarte: Note sur une propriété nouvelle des fonctions harmoniques. C. R. Acad. Sci. Paris, Sér. A-B 246 (1958), 1358-1360. MR 0096050 | Zbl 0084.09403
[16] J. Delsarte J. L. Lions: Moyennes generalises. Comment. Math. Helv. 33 (1959), 59-69. MR 0102672
[17] J. Delsarte: Lectures on topics in mean periodic functions and the two-radius theorem. Tata Inst. Fund. Research, Bombay, 1961.
[18] J. Deny: Families fondamentales. Noyaux associes. Ann. Inst. Fourier 3 (1951), 73-101. MR 0067262
[19] Encyklopadie der mathematischen Wissenschaften. II. Band, 3.L, Teubner-Verlag, 1899-916.
[20] B. Epstein: On the mean value property of harmonic functions. Proc. Amer. Math. Soc. 13 (1962), 830. MR 0140700 | Zbl 0109.07501
[21] B. Epstein M. M. Schiffer: On the mean-value property of harmonic functions. J. Analyse Math. 14 (1965), 109-111. MR 0177124
[22] G. C. Evans: On potentials of positive mass. Trans. Amer. Math. Soc. 37 (1935), 226-253. MR 1501785 | Zbl 0011.21201
[23] W. Feller: Boundaries induced by non-negative matrices. Trans. Amer. Math. Soc. 83 (1956), 19-54. MR 0090927 | Zbl 0071.34901
[24] L. Flatto: Functions with a mean value property. J. Math. Mech. 10 (1961), 11-18. MR 0136751 | Zbl 0097.30605
[25] L. Flatto: The converse of Gauss's theorem for harmonic functions. J. Differential Equations 1 (1965), 483-490. MR 0185134 | Zbl 0132.07804
[26] A. Friedman W. Littman: Bodies for which harmonic functions satisfy the mean value property. Trans. Amer. Math. Soc. 102 (1962), 147-166. MR 0151627
[27] A. Friedman W. Littman: Functions satisfying the mean value property. Trans. Amer. Math. Soc. 102 (1962), 167-180. MR 0151628
[28] W. Fulks: An approximate Gauss mean value theorem. Pac. J. Math. 14 (1964), 513-516. MR 0162047 | Zbl 0163.34503
[29] A. M. Garsia: A note on the mean value property. Trans. Amer. Math. Soc. 102 (1962), 181-186. MR 0151629 | Zbl 0103.32202
[30] C. F. Gauss: Algemeine Lehrsatze in Beziehung auf die im verkehrtem Verhaltnisse des Quadrats der Entfernung Wirkenden Anziehungs- und Abstossungs-Krafte. 1840, Werke, 5. Band, Gottingen, 1867.
[31] R. Godement: Une generalisation du theoreme de la moyenne pour les fonctions harmoniques. C R. Acad. Sci. Paris Ser. A-B 234 (1952), 2137-2139. MR 0047056 | Zbl 0049.30301
[32] M. Goldstein W. H. Ow: On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 29 (1971), 341-344. MR 0279320
[33] J. W. Green: Mean values of harmonic functions on homothetic curves. Pac. J. Math. 6 (1956), 279-282. MR 0080759 | Zbl 0071.32003
[34] M. Heins: Complex function theory. Academic Press, New York, 1968. MR 0239054 | Zbl 0155.11501
[35] L. L. Helms: Introduction to potential theory. Wiley-Interscience, New York, 1969. MR 0261018 | Zbl 0188.17203
[36] M. R. Hirschfeld: Sur les fonctions $\mu$-harmoniques dans un espace localement compact mesuré. C R. Acad. Sci. Paris, Ser. A-B 262 (1966), 174-176. MR 0192069
[37] E. Hopf: Bemerkungen zur Aufgabe 49. Jber. Deutsch. Math. Verein. 39 (1930), 2. Teil, 5-7.
[38] F. Huckemann: On the one circle problem for harmonic functions. J. London Math. Soc. 29 (1954), 491-497. MR 0063499 | Zbl 0056.32601
[39] G. Choquet J. Deny: Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques. Bull. Soc. Math. France 12 (1944), 118-140. MR 0013496
[40] V. Jarnik: Diferencialní počet II. NCSAV, Praha, 1956.
[41] F. John: Plane waves and spherical means applied to partial differential equations. Interscience Publishers, New York, 1955. MR 0075429 | Zbl 0067.32101
[42] O. D. Kellog: Converses of Gauss's theorem on the arithmetic mean. Trans. Amer. Math. Soc. 36 (1934), 227-242. MR 1501739
[43] C. D. Kellog: Les moyennes arithmetiques dans la theorie du potentiel. L'Enseignement Math. 21 (1928), 14-26.
[44] O. D. Kellog: Foundations of Potential Theory. Springer-Verlag, Berlin, 1967. MR 0222317
[45] J. Král I. Netuka J. Veselý: Teorie potenciálu II. SPN, Praha, 1972.
[46] P. Koebe: Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft. Sitzungsber. Berlin. Math. Gessellschaft 5 (1906), 39-42.
[47] Ü. Kuran: On the mean value property of harmonic functions. Bull. London Math. Soc. 4(1972), 311-312. MR 0320348 | Zbl 0257.31006
[48] H. Lebesgue: Sur le théoreme de la moyenne de Gauss. Bull. Soc. Math. France 40 (1912), 16-17.
[49] E. Levi: Sopra una proprietá caratteristica delle funzione armoniche. Atti della Reale Acad. Lincei 18(1909), 10-15.
[50] J. L. Littlewood: On the definition of a subharmonic function. J. London Math. Soc. 2 (1927), 189-192.
[51] J. L. Littlewood: Some problems in real and complex analysis. Hath. Math. Monographs, Massachusetts, 1968. Zbl 0185.11502
[52] J. Mařík: Úloha č. 10. Časopis Pěst. Mat. 81 (1956), 470.
[53] J. Mařík: Dirichletova úloha. Časopis Pěst. Mat. 82 (1957), 257-282. MR 0090666
[54] L Netuka: Řešení úlohy č. 10. Časopis Pěst. Mat. 94 (1969), 223-225.
[55] M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. Inst. Fourier 3 (1951), 103-197. MR 0050023 | Zbl 0047.32004
[56] M. Plancherel: Les problěmes de Cantor et de du Bois-Reymond. Ann. Sci. Ecole Norm. Sup. 31 (1914), 223-262. MR 1509177
[57] H. Poritsky: On operations permutable with the Laplacian. Amer. J. Math. 54 (1932), 667-691. MR 1506929 | Zbl 0005.36001
[58] H. Poritsky: Generalizations of the Gauss law of spherical mean. Trans. Amer. Math. Soc. 43 (1938), 199-225. MR 1501939
[59] I. Privaloff: On a theorem of S. Saks. Mat. Sb. 9 (51) (1941), 457-460. MR 0004364 | Zbl 0024.40402
[60] S. Saks: On the operators Blaschke and Privaloff for subharmonic functions. Mat. Sb. 9(51)(1941), 451-456. MR 0004363
[61] S. Saks A. Zykmund: Analytic functions. PWN, Warszawa, 1965.
[62] K. T. Smith: Mean values and continuty of Riesz potentials. Comm. Pure Appl. Math. 9 (1956), 569-576. MR 0081357
[63] E. Smyrnélis: Sur les moyennes des fonctions paraboliques. Bull. Sci. Math. 93 (1969), 163-173. MR 0277901
[64] E. Smyrnélis: Mesures normales et fonctions harmoniques. Bull. Sci. Math. 95 (1971), 197-207. MR 0294681
[65] J. M. Thompson: Distribution of mass for averages of Newtonian potential functions. Bull. Amer. Math. Soc. 41 (1935), 744-752. MR 1563179 | Zbl 0013.01501
[66] L. Tonelli: Sopra una proprietá caratteristica delle funzione armoniche. Atti della Reale Acad. Lincei 18 (1909), 557-532.
[67] W. A. Veech: A zero - one law for a class of random walks and a converse to Gauss mean value theorem. Ann. of Math. 97 (1973), 189-216. MR 0310269 | Zbl 0282.60048
[68] W. A. Veech: A converse to the mean value theorem for harmonic functions. (preprint). Zbl 0324.31002
[69] V. Volterra: Alcune osservazioni sopra proprietá atte ad individuare una funzione. Atti della Reale Acad. Lincei 18 (1909), 263-266.
[70] J. L. Walsh: A mean value theorem for polynomials and harmonic polynomials. Bull. Amer. Math. Soc. 42 (1936), 923-930. MR 1563465 | Zbl 0016.12302
[71] L. Zalcman: Analyticity and the Pompeiue problem. Arch. Rational Mech. Anal. 47 (1972), 237-254. MR 0348084
[72] L. Zalcman: Mean values and differential equations. Israel J. Math. 14 (1973), 339-353. MR 0335835 | Zbl 0263.35013
[73] S. Zaremba: Contributions á la théorie d'une equation fonctionnelle de la physique. Rend. Circ. Mat. Palermo (1905), 140.
[74] S. Alinhac: Une caracterisation des fonctions harmoniques dans un ouvert par certaines propriétés de moyenne. Rev. Roumaine Math. Pures Appl. 18 (1973), 1465-1472. MR 0346169
[75] S. C. Chu: On a mean value property for solutions of a wave equation. Amer. Math. Monthly 74 (1967), 711-713. MR 0212419 | Zbl 0149.06402
[76] M. Nicolescu: Une propriété caractéristique de moyenne des solutions régulières de l'équation de la chaleur. Com. Acad. R. P. Romane 2 (1952), 677-679. MR 0070844 | Zbl 0082.31001
[77] M. Nicolescu: Sur une propriété caractéristique de moyenne des fonctions polycaloriques. Com. Acad. R. P. Romane 4 (1954), 551-554. MR 0070845 | Zbl 0059.09201
[78] M. Nicolescu: Propriété de moyenne des fonctions harmoniques bornées dans un demi-plan ou dans un angle droit. Rev. Roumaine Math. Pures Appl. 1 (1956), 43-50. MR 0083046
[79] M. Nicolescu: Sur les moyennes généralisées successives d'une fonction. Rev. Roumaine Math. Pures Appl. 6 (1961), 429-441; Mathematica (Cluj) 4 (27) (1962), 107-121. MR 0155987 | Zbl 0108.05203
[80] D. P. Stanford: Functions satisfying a mean value property at their zeros. Amer. Math. Monthly 80 (1973), 665-667. MR 0315068 | Zbl 0277.26006
[81] J. Barta: Some mean value theorems in the potential theory. Acta Tech. Acad. Sci. Hungar. 75(1973), 3-11. MR 0348129 | Zbl 0309.31006
Partner of
EuDML logo