Previous |  Up |  Next

Article

Keywords:
inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey
Summary:
In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
References:
[1] Adasch N.: Topologische Produkte gewisser topologischer Vectorräume. Math. Ann. 186 (1970), 280-284. MR 0276708
[2] Adasch N.: Tonnelierte Räume und zwei Sätze von Banach. Math. Ann. 186 (1970), 209-214. MR 0467230 | Zbl 0184.14804
[3] Adasch N.: Eine Bemerkung über den Graphensatz. Math. Ann. 186 (1970), 327-333. MR 0273345 | Zbl 0184.14901
[4] Adasch N.: Der Graphensatz in topologischen Vectorräumen. Math. Z. 119 (1971), 131-142. MR 0412764
[5] Adasch N.: Vollständigkeit und der Graphensatz. J. reine angew. Math. 249 (1971), 217-220. MR 0288544 | Zbl 0238.46004
[6] Adasch N., Ernst B., Keim D.: Topological vector spaces, The theory without local convexity conditions. Lecture Notes in Mathematics, 639, Eds. A. Dodd and B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR 0487376
[7] Beckenstein E., Narici L.: Topological vector spaces. Marcel Dekker, Inc., New York and Basel, 1985. MR 0812056 | Zbl 0569.46001
[8] Horváth J.: Locally convex spaces. Lecture Notes in Mathematics, 331, Ed. L. Waelbroeck, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR 0482027
[9] Iyahen S.O.: On certain classes of topological spaces. Proc. London Math. Soc. (3) 18 (1968), 285-307. MR 0226358
[10] Iyahen S.O.: Semiconvex spaces. Glasgow J. Math. 9 (1968), 111-118. MR 0239390 | Zbl 0184.34003
[11] Jarchow H.: Locally convex spaces. B.G. Tuebner, Stuttgart, 1981. MR 0632257 | Zbl 0466.46001
[12] Kelley J., Namioka I.: Linear topological spaces. Van Nostrand, Princeton, 1963. MR 0166578 | Zbl 0318.46001
[13] Köthe G.: General linear transformations of locally convex spaces. Math. Ann. 159 (1965), 309-328. MR 0192347
[14] Köthe G.: Topological vector spaces I,II. Springer-Verlag, New York, Heidelberg, Berlin, 1979. MR 0248498
[15] Kōmura Y.: On linear topological spaces. Kumamoto J. Sci., Ser.A 5 No. 3 (1962), 148-157. MR 0151817
[16] Powell M.: On Komura's closed-graph theorem. Trans. AMS 211 (1975), 391-426. MR 0380339 | Zbl 0318.46007
[17] Pták V.: Completeness and the open mapping theorem. Bull. Soc. Math. France 86 (1958), 41-74. MR 0105606
[18] Raikov D.A.: Closed graph theorem and completeness. Proc. 4th All Union Math. Congress, Leningrad, 1961.
[19] Robertson W.: Completions of topological vector spaces. Proc. London Math. Soc. 8 (1958), 242-257. MR 0098298 | Zbl 0081.32604
[20] Robertson A., Robertson W.: On the closed graph theorem. Proc. Glasgow Math. Assoc. 3 (1956), 9-12. MR 0084108 | Zbl 0073.08702
[21] Rodrigues B.: On the Pták homomorphism theorem. J. Aust. Math. Soc. Ser. A 47 (1989), 322-333. MR 1008846 | Zbl 0708.46013
[22] Schaefer H.H.: Topological vector spaces. Springer-Verlag, New York, Heidelberg, Berlin, 1986. MR 0342978 | Zbl 0983.46002
[23] Tomášek S.: M-barrelled spaces. Comment. Math. Univ. Carolinae 11 (1970), 185-204. MR 0271691
[24] Tomášek S.: M-bornological spaces. Comment. Math. Univ. Carolinae 11 (1970), 235-248. MR 0271692
[25] Valdivia Ure na M.: El teorema general de la gráfica cerrada en los espacios vectoriales topológicos localmente convexos. Rev. Real Acad. Ci. Exact. Fis. Nat. Madrid 62 (1968), 545-551. MR 0240593
[26] Valdivia M.: Sobre el teorema de la gráfica cerreda. Collectanea Math. 22 (1971), 51-72.
[27] Valdivia M.: Locally convex spaces. Mathematics Studies 67, North-Holland, Amsterdam, New York, Oxford, 1982. MR 0671092 | Zbl 0708.46003
Partner of
EuDML logo