[1] Bau Sen Du:
A chaotic function whose nonwandering set is the Cantor ternary set. Proc. Amer. Math. Soc. 92 (1984), 277-278.
MR 0754720 |
Zbl 0592.26007
[2] I. Kan:
A chaotic function possessing a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 45-49.
MR 0749887
[3] P. E. Kloeden:
Chaotic diffeгence equations are dense. Bull. Austral. Math. Soc. 15 (1976), 371-379.
MR 0432829
[5] M. Misiurewicz:
Chaos almost everywhere. Iteration Theoгy and its Functional Equations. (editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985).
MR 0829765
[6] M. B. Nathanson:
Piecewise linear functions with almost all points eventually periodic. Proc. Amer. Math. Soc. 60 (1976), 75-81.
MR 0417351
[7] J. Smítal:
A chaotic function with some extremal properties. Proc. Amer. Math. Soc. 87 (1983), 54-56.
MR 0677230
[8] J. Smítal:
A chaotic function with a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 50-54.
MR 0749888