Previous |  Up |  Next

Article

References:
[1] Bau Sen Du: A chaotic function whose nonwandering set is the Cantor ternary set. Proc. Amer. Math. Soc. 92 (1984), 277-278. MR 0754720 | Zbl 0592.26007
[2] I. Kan: A chaotic function possessing a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 45-49. MR 0749887
[3] P. E. Kloeden: Chaotic diffeгence equations are dense. Bull. Austral. Math. Soc. 15 (1976), 371-379. MR 0432829
[4] T. Li Y. Yorke: Period three implies chaos. Ameг. Math. Monthly 82 (1975), 985-992. MR 0385028 | Zbl 0351.92021
[5] M. Misiurewicz: Chaos almost everywhere. Iteration Theoгy and its Functional Equations. (editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). MR 0829765
[6] M. B. Nathanson: Piecewise linear functions with almost all points eventually periodic. Proc. Amer. Math. Soc. 60 (1976), 75-81. MR 0417351
[7] J. Smítal: A chaotic function with some extremal properties. Proc. Amer. Math. Soc. 87 (1983), 54-56. MR 0677230
[8] J. Smítal: A chaotic function with a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 50-54. MR 0749888
Partner of
EuDML logo