[1] G. Anger:
Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I. Akademie-Verlag, Berlin 1967.
MR 0230916 |
Zbl 0163.11901
[2] Е. А. Бадерко:
Применение метода поуаболических потенциалов к решению одной краевой задачи контактной теплопроизводности. Дифф. уравнения 6 (1970), 2200-2213.
MR 0301365 |
Zbl 1107.83313
[4] M. Dont:
On a boundary value problem for the heat equation. Czech. Math. J. 25 (1975), 110-133.
MR 0369919 |
Zbl 0304.35052
[5] M. Dont:
A note on a heat potential and the parabolic variation. Čas. Pěst. Mat. 101 (1976) 28-44.
MR 0473536 |
Zbl 0325.35043
[7] M. Dont:
On the continuity of the heat potentials. Čas. Pěst. Mat. 106 (1981), 156-167.
MR 0621179
[9] M. Gevrey: Sur les équations aux dérivées du type parabolique. J. Math. Pures Appl., 9 (1913), 305-471; 10(1914), 105-148.
[10] J. Král: Theory of potential I. (Czech). SPN Praha 1965.
[11] J. Král:
On the logarithmic potential of the double distribution. Czech. Math. J. 14 (89) 1964, 306-321.
MR 0180690
[12] J. Král:
The Fredholm radius of an operator in potential theory. Czech. Math. J. 15 (90) 1965, 454-473; 565-588.
MR 0190363
[13] J. Král:
The Fredholm method in potential theory. Trans. A. M. S. 125 (1966), 511-547,
MR 0209503
[14] J. Král:
Flows of heat. Atti Accad. Naz. Lincei, Rend. Cl. fis. mat. e nat. 46 (1969), fasc. 2 60-63.
MR 0254440
[15] J. Král:
Flows of heat and the Fourier problem. Czech. Math. J. 20 (1970), 556-598.
MR 0271554
[16] J. Král:
A note on the Robin problem in potential theory. Comment. Math. Univ. Carolinae 14 (1973), 767-771.
MR 0333219
[17] J. Král:
Potentials and boundary value problems. 5. Tagung über Probléme und Methoden der Mathematischen Physik. Wissenschaftliche Schriftenreihe der Technischen Hochschule Karl-Marx-Stadt 1975, 484-500.
MR 0430272
[18] J. Král: Heat sources and heat potentials. Preprint.
[19] J. Král J. Lukeš:
On the modified logarithmic potential. Czech. Math. J. 21 (1971), 76-98.
MR 0277740
[20] J. Král J. Lukes:
Integrals of the Cauchy type. Czech. Math. J. 22 (1972), 663-682.
MR 0338377
[21] J. Král L. Netuka:
Contractivity of C. Neumann's operator in potential theory. J. Math, Anal. Appl. 61 (1977), 607-619.
MR 0508010
[22] J. Král I. Netuka J. Veselý: Theory of potential II, III, IV (Czech). SPN, Praha 1972,1976, 1977.
[23] С. Т. Михнин:
Интегральные уравнения и их приложения к некоторым проблемам механики, математической физики и техники. ГИИТЛ, Москва, 1949.
Zbl 1152.51302
[24] G. Miranda:
Integral equation solution of the first initial-boundary value problem for the heat equation in domains with non-smooth boundary. Comm. Pure. Appl. Math. 23 (1970), 757-765.
MR 0265785
[25] S. Mrzena: Continuity of heat potentials (Czech). Praha, 1976.
[26] Ch. H.Müntz:
Zum dynamischen Warmeleitusproblem. Math. Z. 38 (1933), 323-337.
MR 1545454
[27] I. Netuka:
The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211.
MR 0287021 |
Zbl 0215.42602
[28] I. Netuka:
Generalized Robin problem in potential theory. Czech. Math. J. 22 (1972), 312-324.
MR 0294673 |
Zbl 0241.31008
[29] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czech. Math. J. 22 (1972), 462-489.
MR 0316733 |
Zbl 0241.31009
[30] I. Netuka:
The third boundary value problem in potential theory. Czech, Math. J. 22 (1972), 554-580.
MR 0313528 |
Zbl 0242.31007
[31] I. Netuka:
A mixed boundary value problem for heat potentials. Comment, Math. Univ. Carolinae 19 (1978), 207-211.
MR 0481054 |
Zbl 0388.35029
[32] I. Netuka: Heat potentials and the mixed boundary value problem for the heat equation (Czech). Praha, 1977.
[33] W. Pogorzelski:
Sur la solution de l'equation integrate dans le probleme de Fourier. Ann. Soc. Polon. Math. 24 (1951), 56-74.
MR 0049468
[34] W. Pogorzelski:
Integral equations and their applications. Pergamon Press, Oxford, 1966.
MR 0201934 |
Zbl 0137.30502
[35] F. Riesz B. Sz. Nagy: Lecons d'analyse fonctionnelle. Budapest, 1952.
[36] А. Тихонов:
Об уравнении теплопроводности для нескольких переменных. Бюлетин Моск. Гос. Унив. 1 (1938), 1-45.
Zbl 0063.01977
[37] A. Tichonov A. Samarskij: Equations of mathematical physics (Czech). Praha, 1955.
[38] J. Veselý:
On the heat potential of the double distribution. Čas. Pěst. Mat. 98 (1973), 181-198.
MR 0324058
[39] J. Veselý:
On a generalized heat potential. Czech. Math. J. 25 (1975), 404-423.
MR 0390260