Previous |  Up |  Next

Article

Keywords:
ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation of solutions
Summary:
Conditions are given for a class of nonlinear ordinary differential equations $x^{\prime \prime }+a(t)w(x)=0$, $t\ge t_0\ge 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^{\prime }(t)-\frac{x(t)}{t}$.
References:
[1] Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G.: On the asymptotic integration of nonlinear differential equations. J. Comput. Appl. Math. 202 (2007), 352–376. DOI 10.1016/j.cam.2005.11.038 | MR 2319962 | Zbl 1123.34038
[2] Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., Rogovchenko, Yu. V.: On the asymptotic behavior of solutions to nonlinear ordinary differential equations. Asymptot. Anal. 54 (2007), 1–50. MR 2356463
[3] Agarwal, R. P., Mustafa, O. G.: A Riccatian approach to the decay of solutions of certain semi-linear PDE’s. Appl. Math. Lett. 20 (2007), 1206–1210. DOI 10.1016/j.aml.2006.11.015 | MR 2384247 | Zbl 1137.35356
[4] Atkinson, F. V.: On second order nonlinear oscillation. Pacific J. Math. 5 (1995), 643–647. DOI 10.2140/pjm.1955.5.643 | MR 0072316
[5] Bartušek, M., Došlá, Z., Graef, J. R.: The nonlinear limit-point/limit-circle problem. limit-circle problem, Birkhäuser, Boston, 2004. MR 2020682 | Zbl 1052.34021
[6] Cecchi, M., Marini, M., Villari, G.: Integral criteria for a classification of solutions of linear differential equations. J. Differential Equations 99 (1992), 381–397. DOI 10.1016/0022-0396(92)90027-K | MR 1184060 | Zbl 0761.34009
[7] Cecchi, M., Marini, M., Villari, G.: Comparison results for oscillation of nonlinear differential equations. NoDEA Nonlinear Differential Equations Appl. 6 (1999), 173–190. DOI 10.1007/s000300050071 | MR 1694795 | Zbl 0927.34023
[8] Constantin, A.: Existence of positive solutions of quasilinear elliptic equations. Bull. Austral. Math. Soc. 54 (1996), 147–154. DOI 10.1017/S0004972700015148 | MR 1402999 | Zbl 0878.35040
[9] Constantin, A.: Positive solutions of quasilinear elliptic equations. J. Math. Anal. Appl. 213 (1997), 334–339. DOI 10.1006/jmaa.1997.5541 | MR 1469378 | Zbl 0891.35033
[10] Deng, J.: Bounded positive solutions of semilinear elliptic equations. J. Math. Anal. Appl. 336 (2007), 1395–1405. DOI 10.1016/j.jmaa.2007.03.071 | MR 2353022 | Zbl 1152.35367
[11] Djebali, S., Moussaoui, T., Mustafa, O. G.: Positive evanescent solutions of nonlinear elliptic equations. J. Math. Anal. Appl. 333 (2007), 863–870. DOI 10.1016/j.jmaa.2006.12.004 | MR 2331699 | Zbl 1155.35029
[12] Dugundji, J., Granas, A.: Fixed point theory I. Polish Sci. Publ., Warszawa, 1982. MR 0660439
[13] Ehrnström, M.: Positive solutions for second-order nonlinear differential equations. Nonlinear Anal. 64 (2006), 1608–1620. DOI 10.1016/j.na.2005.07.010 | MR 2200162 | Zbl 1101.34022
[14] Ehrnström, M., Mustafa, O. G.: On positive solutions of a class of nonlinear elliptic equations. Nonlinear Anal. 67 (2007), 1147–1154. DOI 10.1016/j.na.2006.07.002 | MR 2325368 | Zbl 1165.35016
[15] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001. MR 1814364 | Zbl 1042.35002
[16] Hartman, P.: On non-oscillatory linear differential equations of second order. Amer. J. Math. 74 (1952), 389–400. DOI 10.2307/2372004 | MR 0048667 | Zbl 0048.06602
[17] Heidel, J. W.: A nonoscillation theorem for a nonlinear second order differential equation. Proc. Amer. Math. Soc. 22 (1969), 485–488. DOI 10.1090/S0002-9939-1969-0248396-0 | MR 0248396 | Zbl 0169.42203
[18] Hesaaraki, M., Moradifam, A.: On the existence of bounded positive solutions of Schrödinger equations in two-dimensional exterior domains. Appl. Math. Lett. 20 (2007), 1227–1231. DOI 10.1016/j.aml.2007.03.001 | MR 2384252 | Zbl 1137.35429
[19] Kiguradze, I. T., Chanturia, T. A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer, Dordrecht, 1993. Zbl 0782.34002
[20] Mustafa, O. G.: Initial value problem with infinitely many linear-like solutions for a second order differential equation. Appl. Math. Lett. 18 (2005), 931–934. DOI 10.1016/j.aml.2004.07.036 | MR 2152306 | Zbl 1095.34505
[21] Mustafa, O. G.: On the existence of solutions with prescribed asymptotic behaviour for perturbed nonlinear differential equations of second order. Glasgow Math. J. 47 (2005), 177–185. DOI 10.1017/S0017089504002228 | MR 2200965 | Zbl 1072.34049
[22] Mustafa, O. G., Rogovchenko, Yu. V.: Global existence and asymptotic behavior of solutions of nonlinear differential equations. Funkcial. Ekvac. 47 (2004), 167–186. DOI 10.1619/fesi.47.167 | MR 2108671 | Zbl 1118.34046
[23] Mustafa, O. G., Rogovchenko, Yu. V.: Limit-point type solutions of nonlinear differential equations. J. Math. Anal. Appl. 294 (2004), 548–559. DOI 10.1016/j.jmaa.2004.02.029 | MR 2061342 | Zbl 1057.34023
[24] Mustafa, O. G., Rogovchenko, Yu. V.: Asymptotic integration of a class of nonlinear differential equations. Appl. Math. Lett. 19 (2006), 849–853. DOI 10.1016/j.aml.2005.10.013 | MR 2240473 | Zbl 1126.34339
Partner of
EuDML logo