Previous |  Up |  Next

Article

Title: Deformation Theory (Lecture Notes) (English)
Author: Doubek, M.
Author: Markl, M.
Author: Zima, P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 333-371
Summary lang: English
.
Category: math
.
Summary: First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds. (English)
Keyword: deformation
Keyword: Maurer-Cartan equation
Keyword: strongly homotopy Lie algebra
Keyword: deformation quantization
MSC: 13D10
MSC: 14D15
MSC: 46L65
MSC: 53D55
idZBL: Zbl 1199.13015
idMR: MR2381782
.
Date available: 2008-06-06T22:51:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108078
.
Reference: [1] André M.: Method simpliciale en algèbre homologique et algébre commutative.Lecture Notes in Mathematics 32, Springer, Berlin, 1967. MR 0214644
Reference: [2] Atiyah M. F., MacDonald I. G.: Introduction to Commutative Algebra.Addison-Wesley, 1969. Fifth printing. Zbl 0175.03601, MR 0242802
Reference: [3] Balavoine D.: Deformation of algebras over a quadratic operad.In J. D. Stasheff J.-L. Loday and A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Mathematics (1997), 167–205. MR 1436922
Reference: [4] Balavoine D.: Homology and cohomology with coefficients, of an algebra over a quadratic operad.J. Pure Appl. Algebra 132 91998), 221–258. Zbl 0967.18004, MR 1642086
Reference: [5] Bayen F., Flato M., Fronsdal C., Lichnerowiscz A., Sternheimer D.: Deformation and quantization I,II.Ann. Physics 111 (1978), 61–151. MR 0496157
Reference: [6] Ciocan-Fontanine I., Kapranov M. M.: Derived Quot schemes.Ann. Sci. Ecole Norm. Sup. 34(3), (2001), 403–440. Zbl 1050.14042, MR 1839580
Reference: [7] Ciocan-Fontanine I., Kapranov M. M.: Derived Hilbert schemes.J. Amer. Math. Soc. 15 (4) (2002), 787–815. Zbl 1074.14003, MR 1915819
Reference: [8] Félix Y.: Dénombrement des types de $\mml@font@bold k$-homotopie. Théorie de la déformation.Bulletin Soc. Math. France 108 (3), 1980.
Reference: [9] Fox T. F.: The construction of cofree coalgebras.J. Pure Appl. Algebra 84 (2) (1993), 191–198. Zbl 0810.16038, MR 1201051
Reference: [10] Fox T. F.: An introduction to algebraic deformation theory.J. Pure Appl. Algebra 84 (1993), 17–41. Zbl 0772.18006, MR 1195416
Reference: [11] Fox T. F., Markl M.: Distributive laws, bialgebras, and cohomology.In: J.-L. Loday, J. D. Stasheff, A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Math., Amer. Math. Soc. (1997), 167–205. Zbl 0866.18008, MR 1436921
Reference: [12] Gerstenhaber M.: The cohomology structure of an associative ring.Ann. of Math. 78 (2) (1963), 267–288. Zbl 0131.27302, MR 0161898
Reference: [13] Gerstenhaber M.: On the deformation of rings and algebras.Ann. of Math. 79 (1), (1964), 59–104. Zbl 0123.03101, MR 0171807
Reference: [14] Gerstenhaber M.: On the deformation of rings and algebras II.Ann. of Math. 88 (1966), 1–19. Zbl 0147.28903, MR 0207793
Reference: [15] Getzler E.: Lie theory for nilpotent $L_\infty $ algebras.preprint math.AT/0404003, April 2004. MR 2521116
Reference: [16] Hartshorne R.,. : Algebraic Geometry.volume 52 of Graduate Texts in Mathematics. Springer-Verlag, 1977. Zbl 0367.14001, MR 0463157
Reference: [17] Hazewinkel M.: Cofree coalgebras and multivariable recursiveness.J. Pure Appl. Algebra 183 (1-3), (2003), 61–103. Zbl 1048.16022, MR 1992043
Reference: [18] Hinich V.: Tamarkin’s proof of Kontsevich formality theorem.Forum Math. 15 (2003), 591–614. Zbl 1081.16014, MR 1978336
Reference: [19] Hinich V., Schechtman V. V.: Homotopy Lie algebras.Adv. Soviet Math. 16 (2) (1993), 1–28. Zbl 0823.18004, MR 1237833
Reference: [20] Kadeishvili T. V.: O kategorii differentialnych koalgebr i kategorii $A(\infty )$-algebr.Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 77 (1985), 50–70. In Russian. MR 0862919
Reference: [21] Kajiura H., Stasheff J.: Homotopy algebras inspired by clasical open-closed field string theory.Comm. Math. Phys. 263 (3) (2006), 553–581. MR 2211816
Reference: [22] Kobayashi S., Nomizu K.: Foundations of Differential Geometry.volume I, Interscience Publishers, 1963. Zbl 0119.37502, MR 0152974
Reference: [23] Kontsevich M.: Deformation quantization of Poisson manifolds.Lett. Math. Phys. 66 (3) (2003), 157–216. Zbl 1058.53065, MR 2062626
Reference: [24] Kontsevich M., Soibelman Y.: Deformations of algebras over operads and the Deligne conjecture.In: Dito, G. et al., editor, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries, number 21 in Math. Phys. Stud., pages 255–307. Kluwer Academic Publishers, 2000. MR 1805894
Reference: [25] Lada T., Markl M.: Strongly homotopy Lie algebras.Comm. Algebra 23 (6) (1995), 2147–2161. Zbl 0999.17019, MR 1327129
Reference: [26] Lada T., Stasheff J. D.: Introduction to sh Lie algebras for physicists.Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. Zbl 0824.17024, MR 1235010
Reference: [27] Mac Lane S.: Homology.Springer-Verlag, 1963.
Reference: [28] Mac Lane S.: Natural associativity and commutativity.Rice Univ. Stud. 49 (1) (1963), 28–46. MR 0170925
Reference: [29] Mac Lane S.: Categories for the Working Mathematician.Springer-Verlag, 1971. Zbl 0232.18001, MR 0354798
Reference: [30] Markl M.: A cohomology theory for $A(m)$-algebras and applications.J. Pure Appl. Algebra 83 (1992), 141–175. Zbl 0801.55004, MR 1191090
Reference: [31] Markl M.: Cotangent cohomology of a category and deformations.J. Pure Appl. Algebra 113 (2) (1996), 195–218. MR 1415558
Reference: [32] Markl M.: Homotopy algebras are homotopy algebras.Forum Math. 16 (1) (2004), 129–160. Zbl 1067.55011, MR 2034546
Reference: [33] Markl M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras.preprint math.AT/0411456, November 2004. MR 2812919
Reference: [34] Markl M., Remm E.: Algebras with one operation including Poisson and other Lie-admissible algebras.J. Algebra 299 (2006), 171–189. Zbl 1101.18004, MR 2225770
Reference: [35] Markl M., Shnider S., Stasheff J. D.: Operads in Algebra, Topology and Physics.volume 96 of Mathematical Surveys and Monographs, Amer. Math. Soc. Providence, Rhode Island, 2002. Zbl 1017.18001, MR 1898414
Reference: [36] Nijenhuis A., Richardson J.: Cohomology and deformations in graded Lie algebras.Bull. Amer. Math. Soc. 72 (1966), 1–29. Zbl 0136.30502, MR 0195995
Reference: [37] Quillen D.: Homotopical Algebra.Lecture Notes in Math. 43, Springer-Verlag, 1967. Zbl 0168.20903, MR 0223432
Reference: [38] Quillen D.: On the (co-)homology of commutative rings.Proc. Symp. Pure Math. 17 (1970), 65–87. Zbl 0234.18010, MR 0257068
Reference: [39] Serre J.-P.: Lie Algebras and Lie Groups.Benjamin, 1965. Lectures given at Harward University. Zbl 0132.27803, MR 0218496
Reference: [40] Smith J. R.: Cofree coalgebras over operads.Topology Appl. 133 (2) (2003), 105–138. Zbl 1032.18004, MR 1997960
Reference: [41] Stasheff J. D.: Homotopy associativity of H-spaces I,II.Trans. Amer. Math. Soc. 108 (1963), 275–312. Zbl 0114.39402, MR 0158400
Reference: [42] Sullivan D.: Infinitesimal computations in topology.Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331. Zbl 0374.57002, MR 0646078
Reference: [43] Tamarkin D. E.: Another proof of M. Kontsevich formality theorem.preprint math.QA/ 9803025, March 1998.
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_4.pdf 462.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo