[1] Arias-Marco T.:
The classification of 4-dimensional homogeneous D’Atri spaces revisited. Differential Geometry and its Applications 25 (2007), 29–34.
MR 2293639 |
Zbl 1121.53026
[2] Arias-Marco T., Kowalski O.:
The classification of 4-dimensional homogeneous D’Atri spaces. to appear in Czechoslovak Math. J.
MR 2402535
[3] Arias-Marco T., Naveira A. M.:
A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving. Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.
Zbl 1063.53042
[4] Bueken P., Vanhecke L.:
Three- and Four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 75 (1999), 123–136.
MR 1686754 |
Zbl 0944.53026
[5] D’Atri J. E.:
Geodesic spheres and symmetries in naturally reductive homogeneous spaces. Michigan Math. J. 22 (1975), 71–76.
MR 0372786
[6] D’Atri J. E., Nickerson H. K.:
Divergence preserving geodesic symmetries. J. Differential Geom. 3 (1969), 467–476.
MR 0262969 |
Zbl 0195.23604
[7] D’Atri J. E., Nickerson H. K.:
Geodesic symmetries in spaces with special curvature tensors. J. Differenatial Geom. 9 (1974), 251–262.
MR 0394520 |
Zbl 0285.53019
[8] Gray A., Hervella L. M.:
The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(4) (1980), 35–58.
MR 0581924 |
Zbl 0444.53032
[9] Kobayashi S., Nomizu K.:
Foundations of Differential Geometry, Vols. I and II. Interscience, New York, 1963 and 1969.
MR 0152974
[10] Kowalski O.:
Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131–158.
MR 0829002 |
Zbl 0631.53033
[11] Kowalski O., Prüfer F., Vanhecke L.:
D’Atri Spaces. Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284.
MR 1390318 |
Zbl 0862.53039
[12] Podestà F., Spiro A.:
Four-dimensional Einstein-like manifolds and curvature homogeneity. Geom. Dedicata 54 (1995), 225–243.
MR 1326728 |
Zbl 0835.53056
[13] Szabó Z. I.:
Spectral theory for operator families on Riemannian manifolds. Proc. Sympos. Pure Math. 54(3) (1993), 615–665.
MR 1216651
[14] Wallach N. R.:
Compact homogeneous Riemannian manifols with strictly positive curvature. Ann. of Math. 96 (1972), 276–293.
MR 0307122
[15] Wolf J., Gray A.:
Homogeneous spaces defined by Lie group automorphisms, I. J. Differential Geom. 2 (1968), 77–114, 115–159.
MR 0236328 |
Zbl 0169.24103
Wolf J., Gray A.:
Homogeneous spaces defined by Lie group automorphisms, II. J. Differential Geom. 2 (1968), 115–159.
MR 0236329 |
Zbl 0182.24702