Previous |  Up |  Next

Article

Keywords:
impulsive dynamic inclusion; oscillatory; convex valued multivalued; nonoscillatory; delta derivative; fixed point; time scale; upper and lower solutions
Summary:
In this paper we discuss the existence of oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales. We shall rely of the nonlinear alternative of Leray-Schauder type combined with lower and upper solutions method.
References:
[1] Agarwal R. P., Benchohra M., O’Regan D., Ouahab A.: Second order impulsive dynamic equations on time scales. Funct. Differ. Equ. 11 (2004), 223–234. MR 2095486
[2] Agarwal R. P., Bohner M., Saker S. H.: Oscillation of second order delay dynamic equations. Canad. Appl. Math. Quart. 13 (1), (2005), 1-17. MR 2236199 | Zbl 1126.39003
[3] Agarwal R. P., O’Regan D., Wong P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht, 1999. MR 1680024 | Zbl 1157.34301
[4] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Second Order Dynamic Equations. Taylor Francis, Ltd., London, 2003. MR 1965832 | Zbl 1043.34032
[5] Aulbach B., Hilger S.: Linear dynamic processes with inhomogeneous time scale. Nonlinear dynamics and quantum dynamical systems. Akademie-Verlag, Berlin, Math. Res. 59 (1990), 9–20. MR 1068548
[6] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect. Ellis Horwood Ltd., Chichister, 1989. MR 1010418 | Zbl 0684.34056
[7] Bainov D. D., Simeonov P. S.: Oscillation Theory of Impulsive Differential Equations. International Publications Orlando, Florida, 1998. MR 1459713 | Zbl 0949.34002
[8] Benchohra M., Boucherif A.: An existence results for first order initial value problems for impulsive differential inclusions in Banach spaces. Arch. Math. (Brno) 36 (2000), 159–169. MR 1785033
[9] Benchohra M., Hamani S., Henderson J.: Oscillation and nonoscillation for impulsive dynamic equations on certain time scales. Adv. Differential Equations 2006 (2006), Article ID 60860, 12 pages. MR 2255161 | Zbl 1139.39008
[10] Benchohra M., Henderson J., Ntouyas S. K.: Impulsive Diferential Equations and Inclusions. Hindawi Publishing Corporation, Vol. 2, New York, 2006.
[11] Benchohra M., Henderson J., Ntouyas S. K., Ouahab A.: On first order impulsive dynamic equations on time scales. J. Differ. Equations Appl. 10 (2004), 541–548. MR 2060411 | Zbl 1054.39012
[12] Benchohra M., Ntouyas S. K., Ouahab A.: Existence results for second order boundary value problem of impulsive dynamic equations on time scales. J. Math. Anal. Appl. 296 (2004), 65–73. MR 2070493 | Zbl 1060.34017
[13] Bohner E. A., Bohner M., Saker S. H.: Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. Electronic Trans. Numerical Anal. 27 (2007), 1–12. MR 2346144 | Zbl 1177.34047
[14] Bohner M., Peterson A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, New York, 2001. MR 1843232 | Zbl 0978.39001
[15] Bohner M., Peterson A., editors: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. MR 1962542
[16] Bohner M., Saker S. H.: Oscillation of second order nonlinear dynamic equations on time scales. Rocky Mountain J. Math. 34 (2004), 1239–1254. MR 2095254 | Zbl 1075.34028
[17] Bohner M., Tisdell C.: Second order dynamic inclusion. J. Nonlinear Math. Phys. 12 (2005), 36–45. MR 2217094
[18] Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. MR 1189795 | Zbl 0820.34009
[19] Erbe L.: Oscillation criteria for second order linear equations on a time scale. Canad. Appl. Math. Quart. 9 (2001), 1–31. MR 1975729 | Zbl 1050.39024
[20] Erbe L., Peterson A., Saker S. H.: Oscillation criteria for second order nonlinear dynamic equations on a time scale. J. London Math. Soc. 67 (2003), 701–714. MR 1967701
[21] Graef J. R., Karsai J.: On the oscillation of impulsively damped halflinear oscillators. Proc. Sixth Colloquium Qual. Theory Differential Equations, Electron. J. Qual. Theory Differential Equations (14), (2000), 1–12. MR 1798664 | Zbl 0971.34022
[22] Graef J. R., Karsai J.: Oscillation and nonoscillation in nonlinear implusive system with increasing energy. in Proceeding of the Third International Conference on Dynamical systems and Differential Equations, Discrete Contin. Dynam. Systems 7 (2000), 161–173. MR 1798664
[23] Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York, 2003. MR 1987179 | Zbl 1025.47002
[24] Henderson J.: Nontrivial solutions to a nonlinear boundary value problem on a times scale. Comm. Appl. Nonlinear Anal. 11 (2004), 65–71. MR 2028694
[25] Henderson J.: Double solutions of impulsive dynamic boundary value problems on a time scale. J. Differ. Equations Appl. 8 (2002), 345–356. MR 1897856 | Zbl 1003.39019
[26] Henderson J., Tisdell C.: Topological transversality and boundary value problems on time scales. J. Math. Anal. Appl. 289 (2004), 110–125. MR 2020531 | Zbl 1047.34014
[27] Hu, Sh., Papageorgiou N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, 1997. MR 1485775 | Zbl 0887.47001
[28] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. MR 1082551 | Zbl 0719.34002
[29] Lakshmikantham V., Sivasundaram S., Kaymakcalan B.: Dynamic Systems on Measure Chains. Kluwer Academic Publishers, Dordrecht, 1996. MR 1419803 | Zbl 0869.34039
[30] Saker S. H.: Oscillation of nonlinear dynamic equations on time scales. Appl. Math. Comp. 148 (2004), 81–91. MR 2014626 | Zbl 1045.39012
[31] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. MR 1355787 | Zbl 0837.34003
Partner of
EuDML logo