[2] Baston R. J., Eastwood M. G.:
Penrose transform; Its interaction with representation theory. Clarendon Press, Oxford, 1989.
MR 1038279 |
Zbl 0726.58004
[3] Calderbank D. M. J., Diemer T.:
Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine angew. Math. 537 (2001), 67–103.
MR 1856258 |
Zbl 0985.58002
[5] Čap A., Schichl H.:
Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29 3 (2000), 453–505.
MR 1795487 |
Zbl 0996.53023
[6] Čap A., Slovák J., Souček V.:
Bernstein-Gelfand-Gelfand sequences. Ann. of Math. (2) 154 1 (2001), 97–113.
MR 1847589
[7] Colombo F., Sabadini A., Sommen F., Struppa D.:
Analysis of Dirac systems and computational algebra. Birkhäuser, Basel, 2004.
MR 2089988 |
Zbl 1064.30049
[8] Franek P.:
Generalized Verma module homomorphisms in singular character. submitted to Proc. of the Winter School ’Geometry and Physics’, Srni, 2006.
MR 2322409 |
Zbl 1164.22310
[9] Krump L.:
Construction of BGG sequences for AHS structures. Comment. Math. Univ. Carolin. 42 1 (2001), 31–52,
MR 1825371 |
Zbl 1054.53071
[10] Krump L., Souček V.:
Hasse diagrams for parabolic geometries. Proc. of ’The 22nd Winter School ’Geometry and Physics’, Srní 2002, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003).
MR 1982440 |
Zbl 1047.53014
[11] Nacinovich M.:
Complex analysis and complexes of differential operators. LNM 950, Springer-Verlag, Berlin, 1980.
MR 0672785
[13] Slovák J.: Parabolic geometries. Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
[14] Šmíd D.:
The BGG diagram for contact orthogonal geometry of even dimension. Acta Univ. Carolin. Math. Phys. 45 (2004), 79–96.
MR 2109696 |
Zbl 1138.17310