Previous |  Up |  Next

Article

Keywords:
frames; sublocales; coframe of sublocales; fitness and subfitness
Summary:
We present very short and simple proofs of such facts as co-frame distributivity of sublocales, zero-dimensionality of the resulting co-frames, Isbell’s Density Theorem and characteristic properties of fit and subfit frames, using sublocale sets.
References:
[1] Davey B. A., Priestley H. A.: Introduction to Lattices and Order. Second Edition, Cambridge University Press, 2001. MR 1902334 | Zbl 1002.06001
[2] Isbell J. R.: Atomless parts of spaces. Math. Scand. 31 (1972), 5–32. MR 0358725 | Zbl 0246.54028
[3] Johnstone P. T.: Stone Spaces. Cambridge Stud. Adv. Math. No 3, Cambridge University Press, 1983. MR 0698074
[4] Mac Lane S.: Categories for the Working Mathematician. Springer-Verlag, New York, 1971. MR 0354798 | Zbl 0232.18001
[5] Picado J., Pultr A., Tozzi A.: Locales. In: M. C. Pedicchio and W. Tholen (Eds.), Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory, Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, 2003, pp. 49–101. MR 2056581 | Zbl 1080.06010
[6] Priestley H. A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. MR 0265242 | Zbl 0201.01802
[7] Priestley H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 324 (1972), 507–530. MR 0300949 | Zbl 0323.06011
[8] Pultr A., Sichler J.: Frames in Priestley duality. Cahiers Topologie Géom. Différentielle Catég. XXIX (1988), 193–202. MR 0975372
[9] Pultr A., Sichler J.: A Priestley view of spatialization of frames. Cahiers Topologie Géom. Différentielle Catég. XLI (2000), 225–238. MR 1784219 | Zbl 0970.06006
[10] Simmons H.: The lattice theoretic part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. MR 0493959 | Zbl 0396.54014
Partner of
EuDML logo