[1] Adams, M. E., Adaricheva, K. V., Dziobiak, W. and A. V. Kravchenko, A. V.:
Some open question related to the problem of Birkhoff and Maltsev. Studia Logica 78 (2004), 357–378.
MR 2108035
[2] Adams, M. E and Dziobiak, W.:
$Q$-universal quasivarieties of algebras. Proc. Amer. Math. Soc. 120 (1994), 1053–1059.
MR 1172942
[3] Adams, M. E and Dziobiak, W.:
Lattices of quasivarieties of $3$-element algebras. J. Algebra 166 (1994), 181–210.
MR 1276823
[4] Adams, M. E and Dziobiak, W.:
Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253–283.
MR 1835799
[5] Adams, M. E and Dziobiak, W.:
Quasivarieties of idempotent semigroups. Internat. J. Algebra Comput. 13 (2003), 733–752.
MR 2028101
[6] Birjukov, A. P.:
Varieties of idempotent semigroups. Algebra i Logika 9 (1970), 255–273. (in Russian)
MR 0297897
[7] Clifford, A. H. and Preston, G.B.: The Algebraic Theory of Semigroups. AMS, Providence, (vol. 1 1961, vol. 2 1967).
[8] Demlová, M. and Koubek, V.:
Endomorphism monoids of bands. Semigroup Forum 38 (1989), 305–329.
MR 0982011
[9] Demlová, M. and Koubek, V.:
Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66 (2000), 477–516.
MR 1804205
[10] Demlová, M. and Koubek, V.:
Weaker universalities in semigroup varieties. Novi Sad J. Math. 34 (2004), 37–86.
MR 2136462
[11] Demlová, M. and Koubek, V.:
Weak alg-universality and $Q$-universality of semigroup quasivarieties. Comment. Math. Univ. Carolin. 46 (2005), 257–279.
MR 2176891
[12] Dziobiak, W.:
On subquasivariety lattices of some varieties related with distributive $p$-algebras. Algebra Universalis 21 (1985), 205–214.
MR 0835971 |
Zbl 0589.08007
[13] Dziobiak, W.:
The subvariety lattice of the variety of distributive double $ p$-algebras. Bull. Austral. Math. Soc. 31 (1985), 377–387.
MR 0801597 |
Zbl 0579.06012
[15] Gerhard, J. A.:
The lattice of equational classes of idempotent semigroups. J. Algebra 15 (1970), 195–224.
MR 0263953 |
Zbl 0194.02701
[16] Gerhard, J. A. and Shafaat, A.:
Semivarieties of idempotent semigroups. Proc. London Math. Soc. 22 (1971), 667–680.
MR 0292967
[17] Goralčík, P. and Koubek, V.:
Minimal group–universal varieties of semigroups. Algebra Universalis 21 (1985), 111-122.
MR 0835975
[18] Hedrlín, Z. and Lambek, J.:
How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195–212.
MR 0237611
[19] Hedrlín, Z. and Pultr, A.:
Relations (graphs) with finitely generated semigroups. Monatsh. Math. 68 (1964), 213–217.
MR 0168684
[20] Hedrlín, Z. and Pultr, A.:
Symmetric relations (undirected graphs) with given semigroups. Monatsh. Math. 69 (1965), 318–322.
MR 0188082
[21] Hedrlín, Z. and Sichler, J.:
Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1 (1971), 97–103.
MR 0285580
[22] Koubek, V.:
Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolin. 18 (1977), 115–127.
MR 0457276 |
Zbl 0355.18006
[23] Koubek, V.:
Graphs with given subgraphs represent all categories II. Comment. Math. Univ. Carolin. 19 (1978), 249–264.
MR 0498229 |
Zbl 0375.18004
[24] Koubek, V. and Radovanská, H.:
Algebras determined by their endomorphism monoids. Cahiers Topologie Géom. Différentielle Catég. 35 (1994), 187–225.
MR 1295117
[25] Koubek, V. and Sichler, J.:
Universal varieties of semigroups. J. Austral. Math. Soc. Ser. A 36 (1984), 143–152.
MR 0725742
[26] Koubek, V. and Sichler, J.:
Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Math. J. 48 (1998), 473–544.
MR 1637938
[27] Koubek, V. and Sichler, J.:
On relatively universality and $Q$-universality. Studia Logica 78 (2004), 279–291.
MR 2108030
[28] Pultr, A. and Trnková, V.:
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980.
MR 0563525
[29] Rosický, J.:
On example concerning testing categories. Comment. Math. Univ. Carolin. 18 (1977), 71–75.
MR 0432730
[30] Sapir, M. V.:
Varieties with a finite number of subquasivarieties. Sib. Math. J. 22 (1981), 168–187.
MR 0638015 |
Zbl 0491.08011
[31] Sapir, M. V.:
Varieties with countable number of subquasivarieties. Sib. Math. J. 25 (1984), 148–163.
MR 0746951
[32] Sapir, M. V.:
The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172–180.
MR 0855737 |
Zbl 0599.08014
[33] Schein, B.M.:
Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50.
MR 0272686 |
Zbl 0197.28902
[34] Schein, B.M.:
Bands with isomorphic endomorphism semigroups. J. Algebra 96 (1985), 548–565.
MR 0810545 |
Zbl 0579.20064