[1] Adams R.:
Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York/London 1975.
MR 0450957 |
Zbl 0314.46030
[2] Berger M. Schechter M.:
On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97–132.
MR 0500336
[3] Brezis H., Nirenberg L.:
Remarks on finding critical points. Comm. Pure Appl. Math. 44 (1991), 939–963.
MR 1127041 |
Zbl 0751.58006
[4] Chang K. C.:
Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129.
MR 0614246
[6] Dang H., Oppenheimer S.:
Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996) 35–48.
MR 1373525
[7] del Pino M., Manasevich R., Murua A.:
Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Anal. 18, (1992) 79–92.
MR 1138643
[8] Fabry C., Fayyad D.:
Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227.
MR 1310080
[9] Gasinski L., Papageorgiou N. S.:
A multiplicity result for nonlinear second order periodic equations with nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258.
MR 2017079 |
Zbl 1056.47056
[10] Guo Z.:
Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719.
MR 1202567
[11] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997.
MR 1485775 |
Zbl 0887.47001
[12] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands 2000.
MR 1741926 |
Zbl 0943.47037
[13] Kandilakis D., Kourogenis N., Papageorgiou N.:
Two nontrivial critical point for nosmooth functional via local linking and applications. J. Global Optim., to appear.
MR 2210278
[14] Kourogenis N., Papageorgiou N. S.:
Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. Ser. A 69 (2000), 245–271.
MR 1775181 |
Zbl 0999.58006
[15] Kourogenis N., Papageorgiou N. S.:
A weak nonsmooth Palais-Smale condition and coercivity. Rend. Circ. Mat. Palermo 49 (2000), 521–526.
MR 1809092 |
Zbl 1225.49021
[16] Manasevich R., Mawhin J.:
Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393.
MR 1621038
[17] Mawhin J., Willem M.:
Critical Point Theory and Hamiltonian Systems. Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989.
MR 0982267 |
Zbl 0676.58017
[18] Tang C. L., Wu X. P.:
Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386–397.
MR 1842066 |
Zbl 0999.34039