Previous |  Up |  Next

Article

Keywords:
locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system
Summary:
In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).
References:
[1] Adams R.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York/London 1975. MR 0450957 | Zbl 0314.46030
[2] Berger M. Schechter M.: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97–132. MR 0500336
[3] Brezis H., Nirenberg L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44 (1991), 939–963. MR 1127041 | Zbl 0751.58006
[4] Chang K. C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246
[5] Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. MR 0709590 | Zbl 0582.49001
[6] Dang H., Oppenheimer S.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996) 35–48. MR 1373525
[7] del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Anal. 18, (1992) 79–92. MR 1138643
[8] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080
[9] Gasinski L., Papageorgiou N. S.: A multiplicity result for nonlinear second order periodic equations with nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. MR 2017079 | Zbl 1056.47056
[10] Guo Z.: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. MR 1202567
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997. MR 1485775 | Zbl 0887.47001
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands 2000. MR 1741926 | Zbl 0943.47037
[13] Kandilakis D., Kourogenis N., Papageorgiou N.: Two nontrivial critical point for nosmooth functional via local linking and applications. J. Global Optim., to appear. MR 2210278
[14] Kourogenis N., Papageorgiou N. S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. MR 1775181 | Zbl 0999.58006
[15] Kourogenis N., Papageorgiou N. S.: A weak nonsmooth Palais-Smale condition and coercivity. Rend. Circ. Mat. Palermo 49 (2000), 521–526. MR 1809092 | Zbl 1225.49021
[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. MR 1621038
[17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. MR 0982267 | Zbl 0676.58017
[18] Tang C. L., Wu X. P.: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386–397. MR 1842066 | Zbl 0999.34039
Partner of
EuDML logo