[1] Bader R.:
A topological fixed point theory for evolutions inclusions. Z. Anal. Anwendungen 20 (2001), 3–15.
MR 1826317
[2] Bourgain J.:
An averaging result for $l^1$-sequences and applications to weakly conditionally compact sets in $L^1(X)$. Israel J. Math. 32 (1979), 289–298.
MR 0571083
[3] Cornet B.:
Existence of slow solutions for a class differential inclusions. J. Math. Anal. Appl. 96 (1983), 130–147.
MR 0717499
[4] De Blasi F. S., Gorniewicz L., Pianigiani G.:
Topological degree and periodic solutions of differential inclusions. Nonlinear Anal. 37 (1999), 217–245.
MR 1689752 |
Zbl 0936.34009
[5] De Blasi F. S., Pianigiani G.:
Nonconvex valued differential inclusions in Banach spaces. J. Math. Anal. Appl. 157 (1991), 469–494.
MR 1112329
[6] Haddad G., Lasry J.-M.:
Periodic solutions of functional differential inclusions and fixed points of $\gamma $-selectionable correspondences. J. Math. Anal. Appl. 96 (1983), 295–312.
MR 0719317
[7] Halidias N., Papageorgiou N. S.:
Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R^N}$. J. Differential Equations 147 (1998), 123–154.
MR 1632661
[8] Henry C.:
Differential equations with discontinuous right hand side for planning procedures. J. Econom. Theory 4 (1972), 545–551.
MR 0449534
[9] Hu S., Kandilakis D., Papageorgiou N. S.:
Periodic solutions for nonconvex differential inclusions. Proc. Amer. Math. Soc. 127 (1999), 89–94.
MR 1451808 |
Zbl 0905.34036
[10] Hu S., Papageorgiou N. S.:
On the existence of periodic solutions for nonconvex valued differential inclusions in $\mathbb{R^N}$. Proc. Amer. Math. Soc. 123 (1995), 3043–3050.
MR 1301503
[11] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997).
MR 1485775 |
Zbl 0887.47001
[12] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands (2000).
MR 1741926 |
Zbl 0943.47037
[13] Li C., Xue X.:
On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl. 276 (2002), 168–183.
MR 1944344 |
Zbl 1020.34015
[14] Macki J., Nistri P., Zecca P.:
The existence of periodic solutions to nonautonomous differential inclusions. Proc. Amer. Math. Soc. 104 (1988), 840–844.
MR 0931741 |
Zbl 0692.34042
[15] Plaskacz S.:
Periodic solutions of differential inclusions on compact subsets of $\mathbb{R^N}$. J. Math. Anal. Appl. 148 (1990), 202–212.
MR 1052055