Previous |  Up |  Next

Article

Title: On the existence of solutions of some second order nonlinear difference equations (English)
Author: Migda, Małgorzata
Author: Schmeidel, Ewa
Author: Zbąszyniak, Małgorzata
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 379-388
Summary lang: English
.
Category: math
.
Summary: We consider a second order nonlinear difference equation \[ \Delta ^2 y_n = a_n y_{n+1} + f(n,y_n,y_{n+1})\,,\quad n\in N\,. \qquad \mathrm {(\mbox{E})}\] The necessary conditions under which there exists a solution of equation (E) which can be written in the form \[ y_{n+1} = \alpha _{n}{u_n} + \beta _{n}{v_n}\,,\quad \mbox{are given.} \] Here $u$ and $v$ are two linearly independent solutions of equation \[ \Delta ^2 y_n = a_{n+1} y_{n+1}\,, \quad ({\lim \limits _{n \rightarrow \infty } \alpha _{n} = \alpha <\infty } \quad {\rm and} \quad {\lim \limits _{n \rightarrow \infty } \beta _{n} = \beta <\infty })\,. \] A special case of equation (E) is also considered. (English)
Keyword: nonlinear difference equation
Keyword: nonoscillatory solution
Keyword: second order
MSC: 39A10
MSC: 39A11
idZBL: Zbl 1122.39001
idMR: MR2195491
.
Date available: 2008-06-06T22:46:36Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107967
.
Reference: [1] Agarwal R. P.: Difference equations and inequalities. Theory, methods and applications.Marcel Dekker, Inc., New York 1992. Zbl 0925.39001, MR 1155840
Reference: [2] Cheng S. S., Li H. J., Patula W. T.: Bounded and zero convergent solutions of second order difference equations.J. Math. Anal. Appl. 141 (1989), 463–483. MR 1009057
Reference: [3] Drozdowicz A.: On the asymptotic behavior of solutions of the second order difference equations.Glas. Mat. 22 (1987), 327–333.
Reference: [4] Elaydi S. N.: An introduction to difference equation.Springer-Verlag, New York 1996. MR 1410259
Reference: [5] Kelly W. G., Peterson A. C.: Difference equations.Academic Press, Inc., Boston-San Diego 1991. MR 1142573
Reference: [6] Medina R., Pinto M.: Asymptotic behavior of solutions of second order nonlinear difference equations.Nonlinear Anal. 19 (1992), 187–195. Zbl 0773.39003, MR 1174467
Reference: [7] Migda J., Migda M.: Asymptotic properties of the solutions of second order difference equation.Arch. Math. (Brno) 34 (1998), 467–476. MR 1679641
Reference: [8] Migda M.: Asymptotic behavior of solutions of nonlinear delay difference equations.Fasc. Math. 31 (2001), 57–62. MR 1860548
Reference: [9] Migda M., Schmeidel E., Zbąszyniak M.: Some properties of solutions of second order nonlinear difference equations.Funct. Differ. Equ. 11 (2004), 147–152. MR 2056707
Reference: [10] Popenda J., Werbowski J.: On the asymptotic behavior of the solutions of difference equations of second order.Ann. Polon. Math. 22 (1980), 135–142. MR 0610341
Reference: [11] Schmeidel E.: Asymptotic behaviour of solutions of the second order difference equations.Demonstratio Math. 25 (1993), 811–819. Zbl 0799.39001, MR 1265844
Reference: [12] Thandapani E., Arul R., Graef J. R., Spikes P. W.: Asymptotic behavior of solutions of second order difference equations with summable coefficients.Bull. Inst. Math. Acad. Sinica 27 (1999), 1–22. Zbl 0920.39001, MR 1681601
Reference: [13] Thandapani E., Manuel M. M. S., Graef J. R., Spikes P. W.: Monotone properties of certain classes of solutions of second order difference equations, Advances in difference equations II.Comput. Math. Appl. 36 (1998), 291–297. MR 1666147
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_3.pdf 228.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo