Article
Summary:
We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.
References:
[1] Evertse J.-H., Silverman J. H.:
Uniform bounds for the number of solutions to $Y^n=f(X)$. Math. Proc. Camb. Philos. Soc. 100 (1986), 237–248.
MR 0848850
[2] Heath-Brown D. R.:
Review 651.10012. Zentralblatt Mathematik 651, 41 (1989)
MR 1441325
[3] Mardjanichvili C.:
Estimation d’une somme arithmetique. Dokl. Acad. Sci. SSSR 22 (1939), 387–389.
Zbl 0021.20802
[4] Ribenboim P.:
Remarks on exponential congruences and powerful numbers. J. Number Theory 29 (1988), 251–263.
MR 0955951 |
Zbl 0651.10012