[1] Barbu V.:
Mathematical methods in optimization of differential systems. (in Romanian), Ed. Academiei, Bucharest, 1989.
MR 1031990 |
Zbl 0688.49025
[4] Engl H. W.:
Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers. Nonlinear Anal. 1(5) (1977), 495–501.
MR 0636939 |
Zbl 0409.47040
[5] Ky Fan:
Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112 (1969), 234–240.
MR 0251603 |
Zbl 0185.39503
[6] Franchetti C.:
Lipschitz maps and the geometry of the unit ball in normed spaces. Arch. Math. 46 (1986), 76–84.
MR 0829819 |
Zbl 0564.46014
[7] Furi M., Martelli M.:
On the minimal displacement of points under alpha-Lipschitz maps in normed spaces. Bull. Un. Mat. Ital. 9 (1974), 791–799.
MR 0370282 |
Zbl 0304.47050
[8] Goebel K.:
On the minimal displacement of points under lipschitzian mappings. Pacific J. Math. 48 (1973), 151–163.
MR 0328708 |
Zbl 0265.47046
[9] Goebel K., Kirk W. A.:
Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990.
MR 1074005 |
Zbl 0708.47031
[10] Guay M. D., Singh K. L.:
Fixed points of asymptotically regular mappings. Math. Vesnik 35 (1983), 101–106.
MR 0741588 |
Zbl 0541.54056
[11] Kelley J. L.:
General Topology. Van Nostrand, New York, 1964.
MR 0070144
[12] Rădulescu S., Rădulescu M.: Theorems and Problems in Analysis. (in Romanian), Ed. Didactică şi Pedagogică, Bucharest, 1982.
[13] Reich S.:
Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. I, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 59 (1975), 40–44.
MR 0451058
[14] Reich S.:
Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. II, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 60 (1976), 95–96.
MR 0487647 |
Zbl 0362.47024
[15] Rhoades B. E., Sessa S., Khan M. S., Swaleh M.:
On fixed points of asymptotically regular mappings. J. Austral. Math. Soc. (Series A) 43 (1987), 328–346.
MR 0904393 |
Zbl 0659.54042
[16] Rus I. A.: Principles and Applications of Fixed Point Theory. (in Romanian), Ed. Dacia, Cluj-Napoca, 1979.