Previous |  Up |  Next

Article

Keywords:
projectable tangent valued form; product preserving bundle functor; jet; Weil bundle; Frölicher-Nijenhuis bracket
Summary:
First we deduce some general properties of product preserving bundle functors on the category of fibered manifolds. Then we study the prolongation of projectable tangent valued forms with respect to these functors and describe the complete lift of the Frölicher-Nijenhuis bracket. We also present the coordinate formula for composition of semiholonomic jets.
References:
[1] Cabras, A., Kolář, I.: Prolongation of tangent valued forms to Weil bundles. Arch. Math. (Brno), 31 (1995), 139–145. MR 1357981
[2] Doupovec, M., Kolář, I.: On the jets of fibered manifold morphisms. Cahiers Topo. Géom. Diff. Catégoriques, XL (1999), 21–30. MR 1682575
[3] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. CRAS Paris, 239 (1954), 1762–1764. MR 0066734 | Zbl 0057.15603
[4] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. MR 1295815
[5] Grigore D. R., Krupka D.: Invariants of velocities and higher order Grassmann bundles. J. Geom. Phys. 24 (1998), 244–264. MR 1491556
[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[7] Kolář, I., Mikulski, W.: Natural lifting of connections to vertical bundles. Rendiconti del Circolo Matematico di Palermo, Ser. II, Supl. 63 (2000), 97–102. MR 1758084
[8] Kolář, I., Modugno, M.: Torsion of connections on some natural bundles. Diff. Geom. and its Appl. 2 (1992), 1–16. MR 1244453
[9] Kureš, M.: Torsion of connections on tangent bundles of higher order. Supplemento ai Rendiconti Palermo, Série II, No 54 (1997), 65–73. MR 1662727
[10] Mangiarotti, L., Modugno, M.: Graded Lie algebras and connections on a fibered space. J. Math. pures et appl. 63 (1984), 111–120. MR 0776913
[11] Mikulski, W.: Product preserving bundle functors on fibered manifolds. Archivum Math. (Brno) 32 (1996), 307–316. MR 1441401 | Zbl 0881.58002
[12] Modugno, M.: Differential calculus on fibred manifolds. manuscript, 2000. Zbl 0841.53023
[13] Tomáš, J.: Natural operators transforming projectable vector fields to product preserving bundles. Supplemento ai Rendiconti Palermo, Série II, No 59 (1999), 181–187. MR 1692269
[14] Weil, A.: Théorie des points proches sur les variétés différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. MR 0061455
Partner of
EuDML logo