Previous |  Up |  Next

Article

Keywords:
non-holonomic jet; Weil bundle; Weil field; second order connection; prolongation of connections
Summary:
We study systematically the prolongation of second order connections in the sense of C. Ehresmann from a fibered manifold into its vertical bundle determined by a Weil algebra $A$. In certain situations we deduce new properties of the prolongation of first order connections. Our original tool is a general concept of a $B$-field for another Weil algebra $B$ and of its $A$-prolongation.
References:
[1] Cabras, A., Kolář, I.: Prolongation of tangent valued forms to Weil bundles. Arch. Math. (Brno) 31 (1995), 139–145. MR 1357981
[2] Cabras, A., Kolář, I.: On the second order absolute differentiation. Suppl. Rendiconti Circolo Mat. Palermo, Serie II 59 (1999), 123–133. MR 1692263
[3] Cabras, A., Kolář, I.: Second order connections on some functional bundles. Arch. Math. (Brno) 35 (1999), 347–365. MR 1744522
[4] Cabras, A., Kolář, I.: Prolongation of projectable tangent valued forms. to appear in Rendiconti Palermo. MR 1942654
[5] Doupovec M., Kolář, I.: Iteration of fiber product preerving bundle functors. to appear. MR 1872045
[6] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. CRAS Paris 239 (1954), 1762–1764. MR 0066734 | Zbl 0057.15603
[7] Ehresmann, C.: Sur les connexions d’ordre supérieur. Atti del V$^\circ $ Cong. dell’Unione Mat. Italiana, 1955, Roma Cremonese 1956, 344–346.
[8] Goldschmidt, H., Sternberg, S.: The Hamilton formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. MR 0341531
[9] Kolář, I.: Higher order absolute differentiation with respect to generalized connections. Differential Geometry, Banach Center Publications 12 (1984), 153–162. MR 0961078
[10] Kolář, I.: An infinite dimensional motivation in higher order geometry. Proc. Conf. Diff. Geom. and Applications 1995, Masaryk University, Brno 1996, 151–159. MR 1406335
[11] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer--Verlag, 1993. MR 1202431
[12] Kolář, I., Mikulski, W. M.: Natural lifting of connections to vertical bundles. Suppl. Rendiconti Circolo Mat. Palermo, Serie II 63 (2000), 97–102. MR 1758084
[13] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math. (Brno) 33 (1997), 173–189. MR 1478771 | Zbl 0915.58004
[14] Mangiarotti, L., Modugno, M.: Graded Lie algebras and connections on a fibered space. Journ. Math. Pures et Appl. 83 (1984), 111–120. MR 0776913
[15] Pradines, J.: Représentation des jets non holonomes par les morphisms vectoriels doubles soudés. CRAS Paris, série A278 (1974), 1523–1526. MR 0388432
[16] Tomáš, J.: On quasijet bundles. to appear in Rendiconti Palermo. MR 1764094
[17] Virsik, J.: On the holonomity of higher order connections. Cahiers Topol. Géom. Diff. 12 (1971), 197–212. MR 0305294 | Zbl 0223.53026
[18] Weil, A.: Théorie des points proches sur les variétés différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111-117. MR 0061455
Partner of
EuDML logo