Previous |  Up |  Next

Article

Keywords:
best approximation; common fixed point; f-nonexpansive map
Summary:
We study best approximation in $p$-normed spaces via a general common fixed point principle. Our results unify and extend some known results of Carbone [ca:pt], Dotson [do:bs], Jungck and Sessa [ju:at], Singh [si:at] and many of others.
References:
[1] Brosowski B.: Fixpunktsatze in der approximations theorie. Mathematica (Cluj) 11 (1969), 195–220. MR 0277979
[2] Carbone A.: Applications of fixed point theorems. Jnanabha 19 (1989), 149–155. MR 1060662 | Zbl 0718.41042
[3] Dotson W. G.: Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces. J. London Math. Soc. (2) 4 (1972), 408–410. MR 0296778
[4] Hicks T. L., Humphries M. D.: A note on fixed point theorems. J. Approx. Theory 34 (1982), 221–225. MR 0654288 | Zbl 0483.47039
[5] Jungck G.: Commuting mappings and fixed points. Amer. Math. Monthly 83 (1976), 261–263. MR 0400196 | Zbl 0321.54025
[6] Jungck G., Sessa S.: Fixed point theorems in best approximation theory. Math. Japon. 42 (1995), 249–252. MR 1356383 | Zbl 0834.54026
[7] Kirk W. A.: Fixed point theory for nonexpansive mappings. Lecture Notes in Math. 886 (1981), 484–505. MR 0643024 | Zbl 0479.47049
[8] Khan L. A., Latif A.: On best approximation in $p$-normed spaces. submitted.
[9] Köthe G.: Topological vector Spaces I. Springer-Verlag, Berlin, 1969. MR 0248498 | Zbl 0179.17001
[10] Lami Dozo E.: Centres asymptotiques dans certains F-espaces. Boll. Un. Mat. Ital. B(5) 17 (1980), 740–747. MR 0580553 | Zbl 0456.47049
[11] Meinardus G. : Invarianze bei Linearen Approximationen. Arch. Rational Mech. Anal. 14 (1963), 301–303. MR 0156143
[12] Opial Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 531–537. MR 0211301
[13] Rudin W.: Functional Analysis. (second edition), McGraw-Hill, New York, 1991. MR 1157815 | Zbl 0867.46001
[14] Singh S. P.: An application of a fixed point theorem to approximation theory. J. Approx. Theory 25 (1979), 89–90. MR 0526280 | Zbl 0399.41032
Partner of
EuDML logo