Article
Keywords:
best approximation; common fixed point; f-nonexpansive map
Summary:
We study best approximation in $p$-normed spaces via a general common fixed point principle. Our results unify and extend some known results of Carbone [ca:pt], Dotson [do:bs], Jungck and Sessa [ju:at], Singh [si:at] and many of others.
References:
[1] Brosowski B.:
Fixpunktsatze in der approximations theorie. Mathematica (Cluj) 11 (1969), 195–220.
MR 0277979
[3] Dotson W. G.:
Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces. J. London Math. Soc. (2) 4 (1972), 408–410.
MR 0296778
[4] Hicks T. L., Humphries M. D.:
A note on fixed point theorems. J. Approx. Theory 34 (1982), 221–225.
MR 0654288 |
Zbl 0483.47039
[6] Jungck G., Sessa S.:
Fixed point theorems in best approximation theory. Math. Japon. 42 (1995), 249–252.
MR 1356383 |
Zbl 0834.54026
[7] Kirk W. A.:
Fixed point theory for nonexpansive mappings. Lecture Notes in Math. 886 (1981), 484–505.
MR 0643024 |
Zbl 0479.47049
[8] Khan L. A., Latif A.: On best approximation in $p$-normed spaces. submitted.
[10] Lami Dozo E.:
Centres asymptotiques dans certains F-espaces. Boll. Un. Mat. Ital. B(5) 17 (1980), 740–747.
MR 0580553 |
Zbl 0456.47049
[11] Meinardus G. :
Invarianze bei Linearen Approximationen. Arch. Rational Mech. Anal. 14 (1963), 301–303.
MR 0156143
[12] Opial Z.:
Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 531–537.
MR 0211301
[14] Singh S. P.:
An application of a fixed point theorem to approximation theory. J. Approx. Theory 25 (1979), 89–90.
MR 0526280 |
Zbl 0399.41032