1. R. P. Agarwal:
Difference Equations and Inequalities: Theory, Methods and Applications. Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000.
MR 1740241 |
Zbl 0952.39001
2. C. D. Ahlbrandt A. C. Peterson:
Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996.
MR 1423802
4. J. H. Barrett:
A Prüfer transformation for matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518.
MR 0087821 |
Zbl 0079.10603
5. M. Bohner:
Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804–826.
MR 1386607
6. M. Bohner O. Došlý:
Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743.
MR 1490271
7. M. Bohner O. Došlý:
Trigonometric transformation of symplectic difference systems. J. Differential Equ. 163 (2000), 113-129.
MR 1755071
8. M. Bohner O. Došlý:
Discrete Prüfer transformation. to appear in Proc. Amer. Math. Soc.
MR 1838796
9. W. A. Coppel:
Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971.
MR 0460785 |
Zbl 0224.34003
10. O. Došlý:
On transformations of self-adjoint differential systems and their reciprocals. Ann. Polon. Math. 50 (1990), 223-234.
MR 1064996
11. O. Došlý:
Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450.
MR 1665162
12. O. Došlý:
Methods of oscillation theory of half-linear second order differential equations. Czech. Math. J. 50 (125) (2000), 657-671.
MR 1777486
13. O. Došlý R. Hilscher: A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD. submitted.
14. O. Došlý J. Osička:
Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math., 2 (1995), 241-258.
MR 1334880
15. O. Došlý J. Osička:
Oscillation and nonoscillation of higher order self-adjoint differential equations. to appear in Czech. Math. J.
MR 1940063
16. O. Došlý P. Řehák:
Nonoscillation criteria for half-linear second order difference equations. to appear in Comput. Appl. Math.
MR 1838006
17. S. N. Elaydi:
An Introduction to Difference Equations. Second Edition, Springer Verlag, 2000.
MR 1711587 |
Zbl 1071.39001
18. U. Elias:
Oscillation Theory of Two-Term Differential equations. Kluwer, Dordrecht-Boston-London, 1997.
MR 1445292 |
Zbl 0878.34022
19. I. M. Gelfand S. V. Fomin:
Calculus of Variations. Prentice Hall, Engelwood, 1963.
MR 0160139
20. B. Harris R. J. Kruger W. T.Trench:
Trench’s canonical form for a disconjugate n-th order linear difference equations. Panamer. Math. J. 8 (1998), 55-71.
MR 1642648
21. P. Hartman:
Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Amer. Math. Soc. 246 (1978), 1–30.
MR 0515528
22. W. G. Kelley A. Peterson:
Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991.
MR 1142573
23. S. Peňa:
Discrete spectra criteria for singular difference operators. Math. Bohem. 124 (1999), 35–44.
MR 1687425
24. G. Polya:
On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324.
MR 1501228
25. H. Prüfer:
Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), 499-518.
MR 1512291
26. W. T. Reid:
Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin 1980.
MR 0606199 |
Zbl 0459.34001
27. W. F. Trench:
Canonical forms and principal systems of general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327.
MR 0330632