Previous |  Up |  Next

Article

References:
1. R. P. Agarwal: Difference Equations and Inequalities: Theory, Methods and Applications. Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000. MR 1740241 | Zbl 0952.39001
2. C. D. Ahlbrandt A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996. MR 1423802
3. D. Anderson: Discrete trigonometric matrix functions. Panamer. Math. J. 7 (1997), 39-54. MR 1427019 | Zbl 0888.39010
4. J. H. Barrett: A Prüfer transformation for matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518. MR 0087821 | Zbl 0079.10603
5. M. Bohner: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804–826. MR 1386607
6. M. Bohner O. Došlý: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. MR 1490271
7. M. Bohner O. Došlý: Trigonometric transformation of symplectic difference systems. J. Differential Equ. 163 (2000), 113-129. MR 1755071
8. M. Bohner O. Došlý: Discrete Prüfer transformation. to appear in Proc. Amer. Math. Soc. MR 1838796
9. W. A. Coppel: Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. MR 0460785 | Zbl 0224.34003
10. O. Došlý: On transformations of self-adjoint differential systems and their reciprocals. Ann. Polon. Math. 50 (1990), 223-234. MR 1064996
11. O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450. MR 1665162
12. O. Došlý: Methods of oscillation theory of half-linear second order differential equations. Czech. Math. J. 50 (125) (2000), 657-671. MR 1777486
13. O. Došlý R. Hilscher: A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD. submitted.
14. O. Došlý J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math., 2 (1995), 241-258. MR 1334880
15. O. Došlý J. Osička: Oscillation and nonoscillation of higher order self-adjoint differential equations. to appear in Czech. Math. J. MR 1940063
16. O. Došlý P. Řehák: Nonoscillation criteria for half-linear second order difference equations. to appear in Comput. Appl. Math. MR 1838006
17. S. N. Elaydi: An Introduction to Difference Equations. Second Edition, Springer Verlag, 2000. MR 1711587 | Zbl 1071.39001
18. U. Elias: Oscillation Theory of Two-Term Differential equations. Kluwer, Dordrecht-Boston-London, 1997. MR 1445292 | Zbl 0878.34022
19. I. M. Gelfand S. V. Fomin: Calculus of Variations. Prentice Hall, Engelwood, 1963. MR 0160139
20. B. Harris R. J. Kruger W. T.Trench: Trench’s canonical form for a disconjugate n-th order linear difference equations. Panamer. Math. J. 8 (1998), 55-71. MR 1642648
21. P. Hartman: Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Amer. Math. Soc. 246 (1978), 1–30. MR 0515528
22. W. G. Kelley A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. MR 1142573
23. S. Peňa: Discrete spectra criteria for singular difference operators. Math. Bohem. 124 (1999), 35–44. MR 1687425
24. G. Polya: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. MR 1501228
25. H. Prüfer: Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), 499-518. MR 1512291
26. W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin 1980. MR 0606199 | Zbl 0459.34001
27. W. F. Trench: Canonical forms and principal systems of general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327. MR 0330632
Partner of
EuDML logo