Previous |  Up |  Next

Article

Keywords:
impulsive initial value problem; multivalued map; a priori bounds; existence; fixed point
Summary:
In this paper, a nonlinear alternative for multivalued maps is used to investigate the existence of solutions of first order impulsive initial value problem for differential inclusions in Banach spaces.
References:
[1] Aubin J. P., Cellina A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, 1984. MR 0755330 | Zbl 0538.34007
[2] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect. Ellis Horwood Ltd., Chichister, 1989. MR 1010418 | Zbl 0684.34056
[3] Benchohra M.: Existence of solutions for differential inclusions in Banach space. Commun. Appl. Anal. 4 (1) (2000), 71–77. MR 1855983 | Zbl 1089.34540
[4] Benchohra M., Boucherif A.: On first order initial value problems for impulsive differential inclusions in Banach Spaces. Dynam. Syst. Appl. 8 (1) (1999), 119–126. MR 1669010 | Zbl 0929.34017
[5] Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. MR 1189795 | Zbl 0820.34009
[6] Erbe L., Krawcewicz W.: Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rockey Mountain J. Math. 22 (1992), 519–539. MR 1180717 | Zbl 0784.34012
[7] Frigon M., O’Regan D.: Existence results for first order impulsive differential equations. J. Math. Anal. Appl. 193 (1995), 96–113. MR 1338502
[8] Frigon M., O’Regan D.,: Boundary value problems for second order impulsive differential equations using set-valued maps. Rapport DMS-357, University of Montreal, 1993.
[9] Frigon M.: Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires. Dissertationes Math. 296 (1990), 1–79. MR 1075674 | Zbl 0728.34017
[10] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. MR 1082551 | Zbl 0719.34002
[11] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178 | Zbl 0151.10703
[12] Liu X.: Nonlinear boundary value problems for first order impulsive differential equations. Appl. Anal. 36 (1990), 119–130. MR 1040882
[13] Liz E.: Boundary Value Problems for New Types of Differential Equations. Ph.D. Thesis, Univ. Santiago de Compostela, 1994 (in Spanish).
[14] Liz E., Nieto J. J.: Positive solutions of linear impulsive differential equations. Commun. Appl. Anal. 2 (4) (1998), 565–571. MR 1637016 | Zbl 0903.34017
[15] O’Regan D.: Fixed point theory for the sum of two operators. Appl. Math. Lett. 9 (1) (1996), 1–8. Zbl 0858.34049
[16] Pierson-Gorez C.: Problèmes aux Limites Pour des Equations Différentielles avec Impulsions. Ph.D. Thesis, Univ. Louvain-la-Neuve, 1993 (in French).
[17] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. MR 1355787 | Zbl 0837.34003
[18] Silva G. N., Vinter R. B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996), 727–746. MR 1408351 | Zbl 0877.49004
[19] Stewart D. E.: Existence of solutions to rigid body dynamics and the Painleve paradoxes. C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), 689–693. MR 1473847 | Zbl 0894.70006
[20] Yosida K.: Functional Analysis. $6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. MR 0617913 | Zbl 0435.46002
[21] Yujun D., Erxin Z.: An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations. J. Math. Anal. Appl. 197 (1996), 875–889. MR 1373086
Partner of
EuDML logo