[1] Alsholm P.:
Existence of limit cycles for generalized Liénard equation. J. Math. Anal. Appl. 171 (1992), 242–255.
MR 1192504
[2] Cartwright M. L.:
Van der Pol’s equation for relaxation oscillation. In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18.
MR 0052617
[3] Giacomini H., Neukirch S.:
On the number of limit cycles of Liénard equation. Physical Review E56 (1997), 3809-3813.
MR 1476640
[4] van Horssen W. T.:
A perturbation method based on integrating factors. SIAM J. Appl. Math. 59 (1999), 1427-1443.
MR 1692651 |
Zbl 0926.34043
[5] Lefschetz S.:
Differential Equations: Geometric Theory. 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977.
MR 0153903 |
Zbl 0107.07101
[6] Odani K.:
The limit cycle of the van der Pol equation is not algebraic. J. Differential Equations 115 (1995), 146–152.
MR 1308609 |
Zbl 0816.34023
[7] Odani K.:
Existence of exactly $N$ periodic solutions for Liénard systems. Funkcialaj Ekvacioj 39 (1996), 217–234.
MR 1418722 |
Zbl 0864.34032
[8] Odani K.: On the limit cycle of the van der Pol equation. In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235.
[9] Ye Y.-Q., al.:
Theory of Limit Cycles. Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.)
MR 0854278 |
Zbl 0588.34022
[10] Zhang Z.-F., al.:
Qualitative Theory of Differential Equations. Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.)
MR 1175631 |
Zbl 0779.34001