Previous |  Up |  Next

Article

Keywords:
second order geometry; stochastic calculus; connections; parallel transport
Summary:
In this paper we prove that there is a bijective correspondence between connections of $H^2M$, the principal bundle of the second order frames of $M$, and stochastic parallel transport in the tangent space of $M$. We construct in a direct geometric way a prolongation of connections without torsion of $M$ to connections of $H^2M$. We interpret such prolongation in terms of stochastic calculus.
References:
[1] Bismut J. M.: Mécanique Aléatorie. Lecture Notes in Mathematics 866, Springer 1981. MR 0629977
[2] Catuogno P. J.: Second Order Connections and Stochastic Calculus. Relatorio de Pesquisa. Unicamp, 1995.
[3] Cordero L. A., Dobson C. T. J., de León M.: Differential Geometry of Frame Bundles. Kluwer Acad. Pub. 1988.
[4] Emery M.: Stochastic Calculus in Manifolds. Springer-Verlag, 1989. MR 1030543 | Zbl 0697.60060
[5] Emery M.: On Two Transfer Principles in Stochastic Differential Geometry. Séminaire de Probabilités XXIV. Lecture Notes in Mathematics 1426, Springer 1990. MR 1071558 | Zbl 0704.60066
[6] Gancarzewicz J.: Connections of Order r. Ann. Pol. Math. 34, 70–83, 1977. MR 0440471 | Zbl 0347.53008
[7] Ikeda N., Watanabe S.: Stochastic Differential Equations and Diffusion Processes. North-Holland 1981. MR 1011252 | Zbl 0495.60005
[8] Itô K.: Stochastic Parallel Displacement. Probabilistic Methods in Differential Equations. Lecture Notes in Mathematics 451, Springer 1975. MR 0394905 | Zbl 0308.60027
[9] Janyška J., Kolář I.: On the Connections Naturally Induced on the Second Order Frame Bundle. Archivum Mathematicum (Brno) 22, 21–28, 1986. MR 0868117 | Zbl 0628.53034
[10] Kobayashi S.: Canonical Forms on Frame Bundles of Higher Order Contact. Proc. Symp. Pure Math. 3, 186–193, 1961. MR 0126810
[11] Kobayashi S., Nomizu K.: Foundations of Differential Geometry. Interscience, 1 (1963), 2 (1968). MR 0152974 | Zbl 0119.37502
[12] Kolář I.: On some Operations with Connections. Math. Nachr. 69, 297–306, 1975. MR 0391157 | Zbl 0318.53034
[13] Meyer P. A. : Géométrie Différentielle Stochastique. Séminaire de Probabilités XV. Lecture Notes in Mathematics 851, Springer 1981.
[14] Meyer P. A. : Géométrie Différentielle Stochastique (bis). Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. MR 0658725 | Zbl 0539.58039
[15] Schwartz L.: Géométrie Différentielle du 2$^{\text{e}}$ordre, Semimartingales et Équations Différentielle Stochastiques sur une Variété Différentielle. Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. MR 0658722
[16] Shigekawa I.: On Stochastic Horizontal Lifts. Z. Wahrscheinlichkeitsheorie verw. Geviete 59, 211–221, 1982. MR 0650613 | Zbl 0487.60056
Partner of
EuDML logo