Previous |  Up |  Next

Article

Keywords:
oscillatory solutions; structure of solutions
Summary:
The aim of the paper is to study the structure of oscillatory solutions of a nonlinear third order differential equation $y^{\prime \prime \prime } + py^{\prime \prime }+ qy^\prime + rf (y, y^\prime , y^{\prime \prime })=0$.
References:
[1] Bartuçek M.: Asymptotic Properties of Oscillatory Solutions of Differential Equations of the $n$-th Order. Folia, FSN Univ. Masaryk. Brunen., Math. 3, Masaryk Univ., Brno, 1992. MR 1271586
[2] Bartuçek M.: On the Structure of Solutions of a System of Three Differential Inequalities. Arch. Math. 30, No. 2 (1994), 117-130. MR 1292563
[3] Bartuçek M., Doçl Z.: Oscillatory Criteria for Nonlinear Third Order Differential Equations with Quasiderivatives. Diff. Eq. and Dynam. Sys. 3, No. 3 (1995), 251-268. MR 1386748
[4] Bartuçek M., Osička J.: Asymptotic Behaviour of Solutions of a Third-Order Nonlinear Differential Equations. Sub. for publ.
[5] Cecchi M., Marini M., Villari G.: Integral Criteria for a Classification of Solutions of Linear Differential Equations. J. Diff. Eq. 99 (1992), 381-397. MR 1184060
[6] Cecchi M., Marini M.: Oscillation Results for Emden-Fowler Type Differential Equations. J. Math. Anal. Appl. Sub. for publ.
[7] Hartman P.: Ordinary Differential Equations. Boston, 1982. MR 0658490 | Zbl 1009.34001
[8] Moravskì L.: Some Oscillatory Properties of Solutions of Nonlinear Differential Equation of the Form $y^{\prime \prime }+ p(x)y^{\prime \prime }+ q(x)\, f(y^\prime )+ r(x)\, h(y)=0$. Arch. Math. XI (1975), No. 3, 139-150. MR 0412518
[9] Singh Y.P.: Some Oscillatory Theorems for Third-Order non-Linear Differential Equations. Yokohama Math. J., 18 (1970), 77-86. MR 0283300
[10] Waltman P: Oscillatory Criteria for Third Order Nonlinear Differential Equations. Pacif. J. Math., 18 (1966), No. 2, 385-389. MR 0200531
Partner of
EuDML logo