[1] O. Borůvka: Lineare Differentialtransformationen 2.Ordnung. VEB, Berlin, 1967.
[2] M. Gera:
Bedingungen der Nichtoszillationsfähigkeit für die lineare Differentialgleichung dritter Ordnung $ y^{\prime \prime \prime }+p_1(x)y^{\prime \prime } +p_2(x)y^{\prime }+p_3(x)y=0 $. Acta F. R. N. Univ. Comen.-Mathematica XXIII (1969), 13–34.
MR 0291554 |
Zbl 0216.11303
[3] M. Gera:
Bedingungen der Nicht-oszillationsfähigkeit und der Oszillationsfähigkeit für die lineare Differentialgleichung dritter Ordnung. Mat. časop. 21 (1971), 65–80.
MR 0304769 |
Zbl 0216.11302
[4] M. Gera:
Einige oszillatorische Eigenschaften der Lösungen der Differentialgleichung dritter Ordnung $ y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)y=0 $. Scripta Fac. Sci. Nat. UJEP Brunensis, Arch. Math. VII (1971), 65–76.
MR 0306610 |
Zbl 0241.34037
[5] M. Greguš:
Third Order Linear Differential Equations. D. Reidel Publ. Co., Dordrecht, 1987.
MR 0882545
[7] I. T. Kiguradze, T. A. Čanturija: Asymptotical Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow, 1990. (Russian)
[8] M. A. Krasnoseľskij:
Approximate Solution of Operator Equations. Nauka, Moscow, 1969. (Russian)
MR 0259635
[9] F. Neuman:
Global Properties of Linear Ordinary Differential Equations. Academia, Praha, 1991.
MR 1192133 |
Zbl 0784.34009
[10] R. Rabczuk:
Foundations of Differential Inequalities. Pan. Wydav. Nauk., Warsaw, 1976. (Polish)
MR 0457827
[11] J. Regenda:
Oscillatory and Nonoscillatory Properties of Solutions of the Differential Equation $y^{(4)}+P(t)y"+Q(t)y=0$. Math. Slovaca 28 (1978), 329–342.
MR 0534812
[12] E. Rovderová:
Existence of a Monotone Solution of a Nonlinear Differential Equation. J. Math. Anal. Appl. 192 (1995), 1–15.
MR 1329409
[13] V. Šeda: On a Class of Linear $n$-th Order Differential Equations. Czech. Math. J. 39(114) (1989), 350–369.