Previous |  Up |  Next

Article

Keywords:
ABS methods; pivoting algorithm; Hankel matrix; linear equations
Summary:
Summary: The paper deals with a pivoting modification of the algorithm in the class of ABS methods. Numerical experiments compare this pivoting modification with the fundamental version. A hybrid algorithm for the solution of the linear system with the Hankel matrix is introduced.
References:
[1] Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear equations. Numer.Math. 45 (1984), 361–376. MR 0769246
[2] Abaffy, J., Spedicato, E.: ABS projection algorithms mathematical techniques for linear and nonlinear equations. Ellis Horwood, Chichester, 1989. MR 1015928
[3] Bodon, E.: Numerical experiments with ABS algorithms on upper banded systems of linear equations. (1992), Quaderno DMSIA 17/92, University of Bergamo.
[4] Bodon, E.: Numerical experiments with ABS algorithms on banded systems of linear equations. (1992), Quaderno DMSIA 18/92, University of Bergamo.
[5] Bodon, E.: Numerical experiments with Gauss-ABS algorithms on tridiagonal systems of linear equations. (1992), Quaderno DMSIA 31/92, University of Bergamo.
[6] Bodon, E., Spedicato, E.: Numerical evaluation of the implicit LU, LQ and QU algorithms in the ABS class. (1992), Quaderno DMSIA 28/90, University of Bergamo.
[7] Deng, N., Vespucci, M.T.: Experiments with the ABS implici t Gauss-Cholesky algorithm on nested dissection matrices. (1991), Technical Report 1/69, Roma.
[8] Golub, G.H., Van Loan, Ch.F.: Matrix computation. The Johns Hopkins University Press, Baltimore and London, 1989.
[9] Phua, K. H.: Solving sparse linear systems by an ABS-metho d that corresponds to LU-decomposition. BIT 28 (1988), 709–718. MR 0963312
[10] Rissanen, J.: Solution of linear equations with Hankel an d Toeplitz matrices. Numer.Math. 22 (1974), 361–366. MR 0351057
Partner of
EuDML logo