Previous |  Up |  Next

Article

Keywords:
oscillatory solutions; difference equations
Summary:
We offer sufficient conditions for the oscillation of all solutions of the perturbed difference equation $$|\Delta^{m} y(k)|^{\alpha-1}\Delta^{m} y(k)+Q(k,y(k-\sigma_{k}), \Delta y(k-\sigma_{k}),\cdots, \Delta^{m-2}y(k-\sigma_{k}))$$ \hfill $=P(k,y(k-\sigma_{k}),\Delta y(k-\sigma_{k}),\cdots, \Delta^{m-1}y(k-\sigma_{k})),~k\geq k_{0}$ where $\alpha>0.$ Examples which dwell upon the importance of our results are also included.
References:
[1] Agarwal R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. MR 1155840 | Zbl 0925.39001
[2] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations I. An. St. Univ. Iasi 29(1983), 85-96. MR 0739573
[3] Agarwal R. P.: Difference calculus with applications to difference equations. in General Inequalities, ed. W. Walter, ISNM 71, Birkhaver Verlag, Basel (1984), 95-160. MR 0821789 | Zbl 0592.39001
[4] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations II. An. St. Univ. Iasi 29(1985), 165-172. MR 0858057
[5] Grace S. R., Lalli B. S.: Oscillation theorems for $n$th order delay equations. J. Math. Anal. Appl. 91(1983), 342-366. MR 0690876
[6] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating arguments. SIAM J. Math. Anal. 15(1984), 308-316. MR 0731869 | Zbl 0542.34057
[7] Hooker. J. W., Patula W. T.: A second order nonlinear difference equation: oscillation and asymptotic behavior. J. Math. Anal. Appl. 91(1983), 9-29. MR 0688528 | Zbl 0508.39005
[8] Lakshmikantham V., Trigiante D.: Difference Equations with Applications to Numerical Analysis. Academic Press, New York, 1988. MR 0939611
[9] Popenda J. : Oscillation and nonoscillation theorems for second order difference equations. J. Math. Anal. Appl. 123(1987), 34-38. MR 0881528 | Zbl 0612.39002
[10] Staikos V. A.: Basic results on oscillation for differential equations. Hiroshima Math. J. 10(1980), 495-516. MR 0594131 | Zbl 0453.34055
[11] Thandapani E.: Oscillatory behavior of solutions of second order nonlinear difference equations. J. Math. Phys. Sci. 25(1991), 451-464.
[12] Thandapani E., Sundaram P.: Oscillation theorems for some even order nonlinear difference equations. preprint.
[13] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comp. Modelling 21(1995), 63-84. MR 1316120 | Zbl 0820.39002
[14] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations. Dynamic Systems and Applications, to appear. MR 1365834 | Zbl 0840.34021
[15] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Applic., 198 (1996), 337-354. MR 1376268
[16] Wong P. J. Y., Agarwal R. P.: Oscillation theorems for certain second order nonlinear difference equations. to appear. MR 1422774 | Zbl 0874.39012
[17] Wong P. J. Y., Agarwal R. P.: Oscillation and monotone solutions of a second order quasilinear difference equation. to appear.
[18] Wong P. J. Y., Agarwal R. P.: On the oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comp., to appear. MR 1407599
[19] Wong P. J. Y., Agarwal R. P.: Oscillations and nonoscillations of half-linear difference equations generated by deviating arguments, Advances in Difference Equations II. Computers Math. Applic., to appear. MR 1666122
[20] Wong Z., Yu J.: Oscillation criteria for second order nonlinear difference equations. Funk. Ekv. 34(1991), 313-319.
Partner of
EuDML logo