Previous |  Up |  Next

Article

Keywords:
linear r-tangent bundle; linear natural operator; 1-form
Summary:
Let $r,n$ be fixed natural numbers. We prove that for $n$-manifolds the set of all linear natural operators $T^*\rightarrow T^*T^{(r)}$ is a finitely dimensional vector space over $R$. We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators $T^*\rightarrow T^{r*}$.
References:
[1] Doupovec, M., Kurek, J.: Liftings of covariant $(0,2)$-tensor fields to the bundle of $k$-dimensional $1$-velocities. Suppl. Rend. Circ. Mat. Palermo (in press).
[2] Gancarzewicz, J., Mahi, S.: Liftings of 1-forms to the tangent bundle of higher order. Czech. Math. J. 40 (115) (1990), 397–407. MR 1065019
[3] Jany¨ka, J.: Natural operations with projectable tangent valued forms on fibered manifolds. Annali di Math. CLIX (1991), 171–184.
[4] Kol ©, I., Michor, P. W., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. MR 1202431
[5] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to linear frame bundle. Demonstratio Math. 26 (1993), 287–293. MR 1240218
[6] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to the tangent bundle. Ann. U.M.C.S. 43 (1989), 79–83. MR 1158100 | Zbl 0739.58001
[7] Mikulski, W. M.: The natural operators lifting 1-forms on manifolds to the bundles of $A$-velocities. Mh. Math., 119 (1995), 63–77. MR 1315684 | Zbl 0823.58004
[8] Mikulski, W. M.: The geometrical constructions lifting tensor fields of type (0,2) on manifolds to the bundles of $A$-velocities. Nagoya Math. J., 140 (1995) (in press). MR 1369482 | Zbl 0854.53018
[9] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, INC. , New York, 1973. MR 0350650
Partner of
EuDML logo