Previous |  Up |  Next

Article

Keywords:
distribution; projector; manifold; three-web; regular (parallelisable) web
Summary:
Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web.
References:
[1] Akivis, M. A.: Three-webs of multidimensional surfaces. Trudy geom. seminara 2 (1969), 7–31. (Russian) MR 0254760
[2] Akivis, M. A.: Local differentiable quasigroups and three-webs of multidimensional surfaces. Studies in the Theory of Quasigroups and Loops, Stiintsa, Kishinev, 1973, pp. 3 – 12. (Russian) MR 0370391
[3] Chern, S. S.: Eine Invariantentheorie der $3$-Gewebe aus $r$-dimensionalen Mannigfaltigkeiten in $R^{2n}$. Abhandl. Math. Sem. Hamburg Univ. 11 (1936), 333–358.
[4] Chern, S. S.: Web Geometry. Bull. Am. Math. Soc. 6 (1982), 1–8. MR 0634430 | Zbl 0483.53013
[5] Čadek, M., Šim¨a, J.: Decomposition of smooth functions of two multicodimensional variables. Czech. Math. J. 41(116) (1991), Praha, 342–358. MR 1105450
[6] Goldberg, V. V.: Theory of multicodimensional $(n+1)$-webs. Kluwer Academic Publishers, Dordrecht (Boston, London), 1988. MR 0998774 | Zbl 0668.53001
[7] Goldberg, V. V.: Local differentiable quasigroups and webs. In: O Chein, H.O. Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops, 1990. MR 1125816 | Zbl 0737.53015
[8] Kikkawa, M.: Canonical connections of homogeneous Lie loops and $3$-webs. Mem. Fac. Sci Shimane Univ 19 (1985), 37–55. MR 0841222 | Zbl 0588.53014
[9] Kikkawa, M.: Projectivity of homogeneous left loops. “Nonassociative algebras and relative topics”, World Scientific, 1991, pp. 77–99. MR 1150252 | Zbl 0788.53042
[10] Nagy, P. T.: On the canonical connection of a three-web. Publ. Math. Debrecen 32 (1985), 93-99. MR 0810595
[11] Nagy, P. T.: Invariant tensor fields and the canonical connection of a $3$-web. Aeq. Math. 35 (1988), University of Waterloo, Birkhäuser Verlag, Basel, 31-44.
[12] Šim¨a, J.: Some factorization of matrix functions in several variables. Arch. Math. 28 (1992), Brno, 85–94. MR 1201870
[13] Vanžura, J.: Integrability conditions for polynomial structures. Kōdai Math. Sem. Rep. 27 (1976), 42–50. MR 0400106
[14] Vanžura, J.: Simultaneous integrability of an almost tangent structure and a distribution. Demonstratio Mathematica XIX No 1 (1986), 359–370. MR 0895009
[15] Vanžurová, A.: On $(3,2,n)$-webs. Acta Sci. Math. 59 No 3-4, Szeged. MR 1317181 | Zbl 0828.53017
[16] Vanžurová, A.: On three-web manifolds. Report of the Czech Meeting 1993 on Incidence Structures, PU Olomouc, pp. 56–66.
[17] Vanžurová, A.: On torsion of a three-web. ( to appear).
[18] Walker, G. A.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. vol. III, pp. 94-100. MR 0123993 | Zbl 0103.38801
[19] Kopáček, J.: Matematika pro fyziky II. MFF UK, Praha, 1975.
[20] Pham Mau Quam: Introduction à la gomtrie des varits diffrentiables. Dunod, Paris, 1968.
[21] Shelekhov, A.: A good formula for $3$-web curvature tensor. Webs & Quasigroups 1 (1993), 44–50. MR 1224965
[22] Vinogradov, A. M., Yumaguzhin, V. A.: Differential invariants of webs on $2$-dimensional manifolds. Mat. Zametki 48, 26–37. MR 1081890
Partner of
EuDML logo