Previous |  Up |  Next

Article

Keywords:
subdifferential; relaxation theorem; Filippov-Gronwall inequality; lower semicontinuous multifunction; continuous selector; weak norm
Summary:
In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out in detail.
References:
[1] Attouch, H.: Variational Convergence for Functionals and Operators. Pitman, London (1984). MR 0773850
[2] Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin (1984). MR 0755330
[3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, The Netherlands (1976). MR 0390843 | Zbl 0328.47035
[4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math.90, (1988), pp. 69-86. MR 0947921
[5] Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam (1973). Zbl 0252.47055
[6] Colombo, G., Fryszkowski, A., Rzezuchowski, T., Staicu, V.: Continuous selections of solution sets of Lipschitzean differential inclusions. Funkcial. Ekvac. - in press.
[7] Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96, (1983), pp. 130-147. MR 0717499 | Zbl 0558.34011
[8] DeBlasi, F., Myjak, J.: Continuous approximations for multifunctions. Pacific J. Math.123, (1986), pp. 9-31. MR 0834135
[9] Diestel, J., Uhl, J.J.: Vector Measures. Math Surveys,15, AMS, Providence, RI (1977). MR 0453964
[10] Filippov, A.F.: Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 5, (1967), pp. 609-621. MR 0220995
[11] Flytzanis, E., Papageorgiou, N.S.: On the existence of optimal controls for a class of nonlinear infinite dimensional systems. Math. Nachrichten 150, (1991), pp. 203-217. MR 1109656
[12] Frankowska, H.: A priori estimates for operational differential inclusions. J. Differential Equations 84, (1990), pp. 100-128. MR 1042661 | Zbl 0715.49010
[13] Fryszkowski, A., Rzezuchowski, T.: Continuous version of Filippov-Wazewski relaxation theorem. J. Differential Equations, 94, (1991), pp. 254-265. MR 1137615
[14] Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal.7, (1977), pp. 149-182. MR 0507504
[15] Himmelberg, C., Van Vleck, F.: Lipschitzean generalized differential equations. Rend. Sem. Mat. Padova, 48, (1972), pp. 159-169. MR 0340692
[16] Klein, E., Thompson, A.: Theory of Correspondences. Wiley Interscience, New York (1984). MR 0752692
[17] Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26, (1977), pp. 347-374. MR 0508661 | Zbl 0351.34038
[18] Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal.17, (1985), pp. 185-207.
[19] Papageorgiou, N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32, (1987), pp. 437-464. MR 0914749 | Zbl 0634.28005
[20] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10, (1987), pp. 433-442. MR 0896595 | Zbl 0619.28009
[21] Papageorgiou, N.S.: A relaxation theorem for differential inclusions in Banach spaces. Tohoku Math. Journ. 39, (1987), pp. 505-517. MR 0917464 | Zbl 0647.34011
[22] Papageorgiou, N. S.: On the relation between relaxability and performance stability for optimal control problems governed by nonlinear evolution equations. Intern. Journ. of Systems Sci. 22, (1991), pp. 237-259. MR 1087659
[23] Papageorgiou, N.S.: On the solution set of evolution inclusions driven by time dependent subdifferentials. Math. Japonica 37, (1992), pp. 1-13. MR 1196384 | Zbl 0810.34059
[24] Papageorgiou, N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials. Math. Nacrichten 158, (1992), pp. 22-36. MR 1235307 | Zbl 0776.34014
[25] Papageorgiou, N.S.: Continuous dependence results for subdifferential inclusions. Zeitshrift für Analysis und ihre Anwendungen, 12 (1), (1993), pp. 137-152. MR 1239434 | Zbl 0777.34042
[26] Papageorgiou, N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions. Math. Slovaca 42 (1993), pp. 593-615. MR 1273713 | Zbl 0799.34018
[27] Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Math, 1459, Springer-Verlag, New York (1990). MR 1090951 | Zbl 0732.49002
[28] Wagner, D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15, (1977), pp. 859-903. MR 0486391 | Zbl 0427.28009
[29] Watanabe, J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25, (1973), pp. 446-463. MR 0326522 | Zbl 0253.35053
[30] Yamada, Y.: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo 23, (1976), pp. 491-515. MR 0425701 | Zbl 0343.34053
[31] Yotsutani, S.: Evolution equations associated with subdifferentials. J. Math. Soc. Japan 31, (1978), pp. 623-646. MR 0544681
[32] Zhu, Q.-J.: On the solution set of differential inclusions in Banach spaces. J. Differential Equations 93, (1991), pp. 213-237. MR 1125218
Partner of
EuDML logo