Previous |  Up |  Next

Article

Title: Natural liftings of $(0,2)$-tensor fields to the tangent bundle (English)
Author: Doupovec, Miroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 3
Year: 1994
Pages: 215-225
Summary lang: English
.
Category: math
.
Summary: We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$. (English)
Keyword: natural operator
Keyword: tensor field
Keyword: complete lift
Keyword: vertical lift
MSC: 53A55
MSC: 53C15
MSC: 58A20
idZBL: Zbl 0816.53007
idMR: MR1308355
.
Date available: 2008-06-06T21:26:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107508
.
Reference: [1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$.CRAS Paris 309 (1989), 1509–1514. MR 1033091
Reference: [2] de León, M., Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics.North-Holland Mathematics Studies 158, Amsterdam, 1989. MR 1021489
Reference: [3] Janyška, J.: Natural $2$–forms on the tangent bundle of a Riemannian manifold.to appear in Proc. of Winter School in Srní, Suppl. Rend. Circ. Matem. Palermo.
Reference: [4] Kolář, I.: Natural transformations of the second tangent functor into itself.Arch. Math. (Brno) XX (1984), 169–172. MR 0784868
Reference: [5] Kolář, I., Radziszewski, Z.: Natural transformations of second tangent and cotangent functors.Czech. Math. J. 38(113) (1988), 274–279. MR 0946296
Reference: [6] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [7] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification.Differential Geometry and Its Applications, Proceedings, D. Reidel Publishing Company (1987), 149–178. MR 0923348
Reference: [8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces.Quaderni dell’ Instituto di Matematica dell’ Università di Lecce Q. 16 (1978).
Reference: [9] Morimoto, A.: Liftings of tensor fields and connections to tangent bundle of higher order.Nagoya Math. J. 40 (1970), 99–120. MR 0279719
Reference: [10] Morimoto, A.: Liftings of some types of tensor fields and connections to tangent bundles of $p^r$–velocities.Nagoya Math. J. 40 (1970), 13–31. MR 0279720
Reference: [11] Tulczyjev, W.M.: Hamiltonian systems, Lagrangian systems and the Legendre transformation.Symp. Math. 14, 247–258, Roma 1974.
Reference: [12] Yano, K., Ishihara, S.: Tangent and cotangent bundles.Marcel Dekker Inc., New York, 1973. MR 0350650
.

Files

Files Size Format View
ArchMathRetro_030-1994-3_5.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo