[1] Eĺsgolc, L. E.:
Vvedenije v teoriju differencialnych uravnenij s otklonjajuščimsa argumentom. Nauka, Moscow, 1964. (Russian)
MR 0170049
[2] Heard, M. L.:
Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=ax(t)+bx(t^{\alpha }), \alpha >1$. J.Math.Anal.Appl. 44 (1973), 745–757.
MR 0333405 |
Zbl 0289.34115
[3] Kato, T., McLeod, J. B.:
The functional-differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891–937.
MR 0283338
[4] Kuczma, M.:
Functional Equations in a Single Variable. Polish Scient.Publ., Warszawa, 1968.
MR 0228862 |
Zbl 0196.16403
[5] Lade, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1983.
[6] Lim, E.-B.:
Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=Ax(\lambda t)+Bx(t), \lambda >0$. J.Math.Anal.Appl. 55 (1976), 794–806.
MR 0447749 |
Zbl 0336.34060
[7] Neuman, F.:
On transformations of differential equations and systems with deviating argument. Czechoslovak Math.J. 31(106) (1981), 87-90.
MR 0604115 |
Zbl 0463.34051
[8] Neuman, F.:
Transformation and canonical forms of functional-differential equation. Proc. Roy.Soc.Edinburgh 115A (1990), 349-357.
MR 1069527
[9] Pandofi, L.:
Some observations on the asymptotic behaviors of the solutions of the equation $x^{\prime }(t)=A(t)x(\lambda t)+B(t)x(t), \lambda >0$. J.Math.Anal.Appl. 67 (1979), 483–489.
MR 0528702
[10] Szekeres, G.:
Regular iteration of real and complex functions. Acta Math. 100 (1958), 203–258.
MR 0107016 |
Zbl 0145.07903
[11] Tryhuk, V.:
The most general transformation of homogeneous retarded linear differential equations of the $n$-th order. Math.Slovaka 33 (1983), 15–21.
MR 0689272 |
Zbl 0514.34058