[1] C Avramescu:
Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires. Ann. Mat. Pura Appl., 81 (1969), 147-167.
MR 0249738 |
Zbl 0196.10701
[2] T. G. Hallam:
A comparison principle for terminal value problems in ordinary differential equations. Trans. Amer. Math. Soc., 169 (1972), 49-57.
MR 0306611 |
Zbl 0257.34012
[3] T. G. Hallam G. Ladas, V. Lakshmikantham:
On the asymptotic behavior of functional differential equations. SIAM J. Math. Anal., 3 (1972), 58-64.
MR 0315247
[4] J. Kurzweil:
On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \to - \infty$. Časopis Pěst. Mat., 96 (1971), 229-238.
MR 0298164 |
Zbl 0218.34065
[5] G. Ladas, V. Lakshmikantham:
Global existence and asymptotic equilibrium in Banach spaces. J. Indian Math. Soc., 36 (1972), 33-40.
MR 0318622 |
Zbl 0273.34040
[6] G. Ladas, V. Lakshmikantham:
Asymptotic equilibrium of ordinary differential systems. Applicable Anal., 5 (1975), 33-39.
MR 0508580 |
Zbl 0344.34036
[7] E.-B. Lim:
Asymptotic behavior of solutions of the functional differential equation $x' = A x(\lambda t) + B x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 55 (1978), 794-806.
MR 0447749
[8] A. R. Mitchell, R. W. Mitchell:
Asymptotic equilibrium of ordinary differential systems in a Banach space. Math. Systems Theory, 9 (1976), 308-314.
MR 0463603 |
Zbl 0334.34052
[9] L. Pandolfi:
Some Observations on the Asymptotic Behavior of the Solutions of the Equation $\dot{x} = A(t)x(\lambda t) + B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 67 (1979), 483-489.
MR 0528702
[10] V. A. Staikos: Differential Equations with Deviating Arguments-Oscillation Theory. (unpublished manuscripts).
[11] V. A. Staikos:
Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments. (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716.
MR 0567287