[1] R. P. Agarwal:
Iterative methods for the system of second order boundary value problems. J. Math. Phys. Sci. 11 (1977), 209-218.
MR 0461924
[2] R. P. Agarwal:
Component-wise convergence in quasilinearization. Proc. Indian Acad. Sci. Sec. A. 86 (1977), 519-529.
MR 0492473
[3] R. P. Agarwal:
On periodic solutions of nonlinear second order differential systems. J. Comp. Appl. Math. 5 (1979), 117-123.
MR 0536248 |
Zbl 0407.34021
[4] R. P. Agarwal, Jaromír Vosmanský:
Two-point boundary value problems for second order systems. Arch. Math. (Brno), 19 (1983), 1-8.
MR 0724304
[5] R. P. Agarwal:
Contraction and approximate contraction with an application to multi-point boundary value problems. J. Comp. Appl. Math. 9 (1983), 315-325.
MR 0729235 |
Zbl 0546.65060
[6] G. Anichini:
Nonlinear problems for systems of differential equations. Nonlinear Analysis. Theory, Methods and Applications, 1 (1977), 691-699.
MR 0592963 |
Zbl 0388.34011
[7] S. R. Bernfeld, V. Lakshmikantham:
An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974.
MR 0445048 |
Zbl 0286.34018
[8] L. Collatz:
Functional Analysis and Numerical Mathematics. Academic Press, New York, 1974.
MR 0205126
[9] R. Conti:
Recent trends in the theory of boundary value problems for ordinary differential equations. Boll. UMI, 22 (1967), 135-178.
MR 0218650 |
Zbl 0154.09101
[10] P. L. Falb, J. L. de Jong:
Some Successive Approximation Methods in Control and Oscillation Theory. Academic Press, New York, 1969.
MR 0264855 |
Zbl 0202.09603
[11] A. Perov, A. Kibenko:
On a certain general method for investigation of boundary value problems. Izv. Akad. Nauk SSSR 30 (1966), 249-264.
MR 0196534
[12] J. Schröder:
Das Iterationsverfahren bei verallgemeinertem Abstandsbegriff. Math. Z. 60 (1956), 111-116.
MR 0083816
[13] M. Urabe:
An existence theorem for multi-point boundary value problems. Funkcialaj Ekvacioj, 9 (1966), 43-60.
MR 0209558 |
Zbl 0168.06502
[14] M. Urabe:
The Newton method and its applications. Proc. US-Japan seminar on differential and functional equations, (1967), 383-410.
MR 0223628
[15] M. Urabe:
Component-wise error analysis of iterative methods practiced on a floating-point system. Mem. Fac. Sci. Kyushu Univ. Ser. A. 27 (1973), 23-64.
MR 0323099 |
Zbl 0277.65034
[16] M. Urabe:
A posteriori component-wise error estimation of approximate solutions to nonlinear equations. Lecture notes in Computer science 29, Interval Mathematics, Springer-Verlag (1975), 99-117.
Zbl 0306.65031
[17] M. Urabe:
On the Newton method to solve problems of the least squares type for ordinary differential equations. Proc. Int. Symp. Dynamical Systems, Providence, (1974), 1-7.
MR 0375791
[18] M. Urabe:
On the Newton method to solve problems of the least squares type for ordinary differential equations. Mem. Fac. Sci. Kyushu Univ., Ser. A, 29 (1975), 173-183.
MR 0375791 |
Zbl 0357.65055