Previous |  Up |  Next

Article

References:
[1] I. T. Kiguradze: On the oscillation of solutions of the equation $\frac{d^m u}{dt^m} + a(t) |u|^n \sgn{u} = 0. (Russian), Mat. Sb. 65 (1964), 172-187. MR 0173060 | Zbl 0135.14302
[2] I. T. Kiguradze: The problem of oscillation of solutions of nonlinear differential equations. (Russian), Differenciaľnye Uravnenija 1 (1965), 995-1006. MR 0194689 | Zbl 0155.41802
[3] Y. Kitamura, T. Kusano: An oscillation theorem for a superlinear functional differential equation with general deviating arguments. Bull. Austral. Math. Soc. 18 (1978), 395-402. MR 0508810 | Zbl 0372.34047
[4] P. Marushiak: Oscillation properties of solutions of n-th order differential equations with time lag. Differenciaľnye Uravnenija 14 (1978), 1186-1191. MR 0492727 | Zbl 0436.34065
[5] Ju. A. Mitropoľskii, V. N. Ševelo: On the development of the theory of oscillation of solutions of differential equations with retarded argument. Ukrain. Mat. Ž. 29 (1977), 313-323. MR 0442418
[6] Ch. G. Philos: Oscillatory and asymptotic behavior of the bounded solutions of differential equations with deviating arguments. Hiroshima Math. J. 8 (1978), 31-48. MR 0481368 | Zbl 0378.34055
[7] Ch. G. Philos: Oscillatory and asymptotic behavior of all solutions of differential equations with deviating arguments. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 195-210. MR 0516413
[8] Ch. G. Philos: Oscillatory and asymptotic behavior of strongly superlinear differential equations with deviating arguments. Ann. Mat. Pura Appl., 126 (1980), 342-361. MR 0612367 | Zbl 0456.34045
[9] V. A. Staikos: Basic results on oscillation for differential equations with deviating arguments. Hiroshima Math. J., 10 (1980), Hiroshima Math. J. 10 (1980), 495-516. MR 0594131 | Zbl 0453.34055
Partner of
EuDML logo