[A] Aubin J. P.:
Approximation of Elliptic Boundary-Value Problems. New York, London, 1982.
MR 0478662
[AB] Aubin J. P., Burchard H.:
Some aspects of the method of the hyper-circle applied to elliptic variational problems. Proceedings of SYNSPADE. Academic Press, 1971.
MR 0285136
[ET] Ekeland I., Temam R.:
Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976.
MR 0463994 |
Zbl 0322.90046
[FK] Fučík S., Kufner A.: Nonlinear differential equations. SNTL Prague 1978 (In Czech).
[GGZ] Gajewski H., Groger K., Zacharias K.: Nichtlineare Operator-Gleichungen und Operatordifferentialgleichungen. Akademie -Verlag, Berlin,1974 (Russian Mir Moskva 1978).
[HH] Haslinger J., Hlaváček I.:
Convergence of a finite element method based on the dual variational formulation. Apl. Mat. 21 (1976), 43-55.
MR 0398126
[H] Hlaváček I.:
The density of solenoidal functions and the convergence of a dual finite element method. Apl. Mat. 25 (1980), 39-55.
MR 0554090
[HK] Hlaváček I., Křížek M.:
Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52-69.
MR 0729953
[K] Kodnár R.: Aposteriori estimates of approximate solutions for some types of boundary value problems. Proceedings of Equadiff 6, Brno 1985.
[KR] Křížek M.:
Conforming equilibrium finite element methods for some elliptic plane problems. RAIRO Anal. Numer. 17 (1983), 35-65.
MR 0695451
[V] Vacek J.:
Dual variational principles for an elliptic partial differential equation. Apl. Mat. 21 (1976), 5-27.
MR 0412594 |
Zbl 0345.35035