Previous |  Up |  Next

Article

References:
[1] R. Azencott E. Wilson: Homogeneous manifolds with negative curvature. Part 2, Mem. Amer. Math. Soc. 8 (1976), n. 178. MR 0426002
[2] M. Božek: Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. pěst. mat. 105 (1980), 368-384. MR 0597914
[3] N. Bourbaki: Groupes ei alge'bres de Lie. Chap. 1-3, Hermann, Paris 1972. MR 0573068
[4] V. Gorbačevič A. Oniščik: Lie groups of transformations. (Russian), Itogi nauki i techhiki 20 (1988), 103-240.
[5] A. Gray: Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geom. 7 (1972), 343-369. MR 0331281 | Zbl 0275.53026
[6] S. Helgason: Differential geometry. Lie groups and symmetric spaces, Acad. Press, New York 1978. MR 0514561 | Zbl 0451.53038
[7] D. Hertzig: The structure of Frobenius algebraic groups. Atner. J. Math. 3 (1961), 421-431. MR 0137708 | Zbl 0117.27203
[8] N. Jacobson: A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc. 8 (1955), 281-283. MR 0068532 | Zbl 0064.27002
[9] O. Kowalski: Generalized symmetric spaces. LN in Mathematics, Vol. 805, Springer, Berlin 1980. MR 0579184 | Zbl 0431.53042
[10] V. Kreknin: On the solvability of Lie algebras with a regular automorphism of a finite order. (Russian), DAN SSSR 150 (1963), 467-469. MR 0157990
[11] V. Platonov: Algebraic groups with almost regular automorphism. (Russian), lev. AN SSSR 31 (1967), 687-696. MR 0217078
[12] A. Tralle: One new existence theorem for the generalized symmetric spaces of solvable type. Ann. Glob. Anal. and Geom. 8 (1990) (to appear). MR 1088508 | Zbl 0666.53028
[13] E. Vinberg A. Oniščik: Seminar on Lie groups and algebraic groups. (Russian).
[14] E. Wilson: Isometry groups on homogeneous nilmanifolds. Geom. Dedic. 12 (1982), 337-346. MR 0661539 | Zbl 0489.53045
Partner of
EuDML logo