[1] R. Azencott E. Wilson:
Homogeneous manifolds with negative curvature. Part 2, Mem. Amer. Math. Soc. 8 (1976), n. 178.
MR 0426002
[2] M. Božek:
Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. pěst. mat. 105 (1980), 368-384.
MR 0597914
[3] N. Bourbaki:
Groupes ei alge'bres de Lie. Chap. 1-3, Hermann, Paris 1972.
MR 0573068
[4] V. Gorbačevič A. Oniščik: Lie groups of transformations. (Russian), Itogi nauki i techhiki 20 (1988), 103-240.
[5] A. Gray:
Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geom. 7 (1972), 343-369.
MR 0331281 |
Zbl 0275.53026
[6] S. Helgason:
Differential geometry. Lie groups and symmetric spaces, Acad. Press, New York 1978.
MR 0514561 |
Zbl 0451.53038
[7] D. Hertzig:
The structure of Frobenius algebraic groups. Atner. J. Math. 3 (1961), 421-431.
MR 0137708 |
Zbl 0117.27203
[8] N. Jacobson:
A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc. 8 (1955), 281-283.
MR 0068532 |
Zbl 0064.27002
[9] O. Kowalski:
Generalized symmetric spaces. LN in Mathematics, Vol. 805, Springer, Berlin 1980.
MR 0579184 |
Zbl 0431.53042
[10] V. Kreknin:
On the solvability of Lie algebras with a regular automorphism of a finite order. (Russian), DAN SSSR 150 (1963), 467-469.
MR 0157990
[11] V. Platonov:
Algebraic groups with almost regular automorphism. (Russian), lev. AN SSSR 31 (1967), 687-696.
MR 0217078
[12] A. Tralle:
One new existence theorem for the generalized symmetric spaces of solvable type. Ann. Glob. Anal. and Geom. 8 (1990) (to appear).
MR 1088508 |
Zbl 0666.53028
[13] E. Vinberg A. Oniščik: Seminar on Lie groups and algebraic groups. (Russian).
[14] E. Wilson:
Isometry groups on homogeneous nilmanifolds. Geom. Dedic. 12 (1982), 337-346.
MR 0661539 |
Zbl 0489.53045