Previous |  Up |  Next

Article

References:
[1] H. F. BOHNENBLUST S. KARLIN: On a theorem of Ville in: "Contributions to the Theory of Games". (H. W. KUHN and A. W TUCKER Eds.), Vol. I, Ann. of Math. Studies 24, Princeton Univ. Press (1950), 155-160. MR 0041415
[2] F. E. BROWDER: The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann. 177 (1968), 283-301. MR 0229101
[3] F. E. BROWDER: On a sharpened form of the Schauder fixed point theorem. Proc. Nat. Acad. Sci. USA 74 (1977), 4749-4751. MR 0463982 | Zbl 0375.47028
[4] F. E. BROWDER: Coincidence theorems, minimax theorems and variational inequalities. Contemporary Math., Vol. 26, Amer. Math. Soc, Providence, R.I., (1984) 67-80. MR 0737389 | Zbl 0542.47046
[5] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. USA 38 (1952), 121-126. MR 0047317 | Zbl 0047.35103
[6] K. FAN: A generalization of Tychonoff's fixed point theorem. Math. Ann. 142 (1961), 305-310. MR 0131268 | Zbl 0093.36701
[7] K. FAN: A minimax inequality and applications, in: "Inequalities". (O. SHISHA Ed.), Vol. III, Academic Press, New York, London (1972), 103-113. MR 0341029
[8] K. FAN: Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984), 519-537. MR 0735533 | Zbl 0515.47029
[9] I. L. GLICKSBERG: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174. MR 0046638 | Zbl 0163.38301
[10] C. W. HA: Minimax and fixed point theorems. Math. Ann. 248 (1980), 73-77. MR 0569411 | Zbl 0413.47042
[11] O. HADŽIĆ: Fixed point theory in topological vector spaces. Univ. of Novi Sad, Inst, of Math., Novi Sad, Yugoslavia (1984). MR 0789224
[12] B. R. HALPERN G. M. BERGMAN: A fixed point theorem for inward and outward maps. Trans. Amer. Math. Soc. 130 (1968), 353-358. MR 0221345
[13] C. J. HIMMELBERG: Fixed points for compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368
[14] B. KNASTER C. KURATOWSKI S. MAZURKIEWICZ: Ein Beweis des Fixpunktsatzes für n-dimensional Simplexe. Fund. Math. 14 (1929), 132-137.
[15] H. KOMIYA: Coincidence theorem and saddle point theorem. Proc. Amer. Math. Soc. 96 (1986), 599-602. MR 0826487 | Zbl 0657.47055
[16] T. C. LIN: Convex sets, fixed points, variational and minimax inequalities. Bull. Austral. Math. Soc. 34 (1986), 107-117. MR 0847978 | Zbl 0597.47038
[17] G. MEHTA: Fixed points, equilibria and maximal elements in linear topological spaces. Comm. Math. Univ. Carolinae 28 (2) (1987), 377-385. MR 0904761 | Zbl 0632.47041
[18] S. PARK: Fixed point theorems on compact convex sets in topological vector spaces. MSRI Report Series, N. 25 (1986). Abstract 87T-47-211 of Amer. Math. Soc, Vol. 8, no. 6, p. 445.
[19] J. B. PROLLA: Fixed point theorems for set-valued mappings and existence of best approximants. Numer.- Funct. Anal. Optimiz. 5 (4) (1982-83), 449-455. MR 0703107
[20] E. TARAFDAR: On nonlinear variational inequalities. Proc. Amer. Math. Soc. 67 (1977), 95-98. MR 0467408 | Zbl 0369.47029
[21] E. TARAFDAR: Variational problems via a fixed point theorem. Indian J. Math. 28 (1986), 229-240. MR 0900728 | Zbl 0641.49005
[22] E. TARAFDAR: A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. J. Math. Anal. Appl. 128 (1987), 475-479. MR 0917380 | Zbl 0644.47050
Partner of
EuDML logo